Surface Degradation of Resin-based Materials by Pediatric Syrup Containing Amoxicillin under Erosive Challenge

Márcia Pereira Alves Santos, Ana Lúcia Patrocínio, Tatiana Kelly da Silva Fidalgo, Sérgio Souza Camargo Jr, Lucianne Cople Maia

Abstract


Objective: To investigate the effect of a pediatric syrup containing Amoxicillin on resin-based on the surfaces of resin-based materials under pH cycling. Material and Methods: Cylindrical samples (n=60) of a compomer (Freedom) and a microhybrid composite (TPH Spectrum) were prepared following the manufacturer’s instructions. The specimens were divided into two groups and treated for 30min, twice a day, for 14 days with a pediatric syrup containing Amoxicillin, Amoxil™ 500mg/5ml (experimental group) or Distilled water (control group). During the 14 days, the samples were submitted to pH cycling (3h in demineralizing, 20h in remineralizing saliva, and 1h for treatment). The surface roughness was evaluated at baseline, on the 7th and 14th days of erosive challenge using a profilometer and illustrated by SEM. The data were statistically analyzed by one-way ANOVA, Tukey HSD and paired T- tests (p < 0.05). At baseline, the mean Ra TPH = mean Ra F (p > 0.05). Results: After 7 days, it was observed no erosion (p = 0.674) for THP Spectrum (0.19 Ra) and an increasing of Ra (p = 0.02) for Freedom (19.95 Ra). After 14 days, it was observed an increasing of Ra for both THP Spectrum (0.56 Ra) and for Freedom (3.44 Ra), demonstrating that the degradation was treatment and time-dependent (p < 0.001). The pediatric syrup containing Amoxicillin increased the surface roughness of the TPH Spectrum surface one and a half times (p = 0.003) and the surface roughness of Freedom was increased by more than two times (p < 0.001). SEM images showed different aspects of the surfaces of the two materials with a loss of integrity to both. Conclusion: The pediatric syrup containing Amoxicillin under pH cycling increased the roughness of the both tested resin-based restorative materials.

Keywords


Tooth Erosion; Dental Materials; In Vitro Techniques; Medicine.

Full Text:

PDF

References


Kramer N, Garcia-Godoy F, Frankenberger R. Evaluation of resin composite materials. Part II: in vivo investigations. Am J Dent 2005 18(2):75-81.

Mass E, Gordon M, Fuks AB. Assessment of compomer proximal restorations in primary molars: a retrospective study in children. ASDC J Dent Child 1999; 66(2):93-7, 84.

DeSchepper EJ. Compomers, reattachment method expand restoration capabilities. J Indiana Dent Assoc 1998; 77(4):42-5.

Burke FJ, Fleming GJP, Owen FJ, Watson DJ. Materials for restoration of primary teeth: 2. Glass ionomer derivatives and compomers. Dent Update 2002; 29(1):10-4, 16-7.

Valinoti AC, Neves BG, da Silva EM, Maia LC. Surface degradation of composite resins by acidic medicines and pH-cycling. J Appl Oral Sci 2008; 16(4):257-65. doi: 10.1590/S1678-77572008000400006.

Gopferich A. Mechanisms of polymer degradation and erosion. Biomaterials 1996; 17(2):103-14.

Rios D, Honório HM, Magalhães AC, Buzalaf MA, Palma-Dibb RG, Machado MA, da Silva SM. Influence of toothbrushing on enamel softening and abrasive wear of eroded bovine enamel: an in situ study. Braz Oral Res 2006; 20(2):148-54. doi: 10.1590/S1806-83242006000200011.

Silva KG, Pedrini D, Delbem AC, Cannon M. Effect of pH variations in a cycling model on the properties of restorative materials. Oper Dent 2007; 32(4):328-35. doi: 10.2341/06-89.

Prakki A, Cilli R, Mondelli RF, Kalachandra S, Pereira JC. Influence of pH environment on polymer based dental material properties. J Dent 2005; 33(2):91-8. doi: 10.1016/j.jdent.2004.08.004.

Turssi CP, Hara AT, de Magalhães CS, Serra MC, Rodrigues AL Jr. Influence of storage regime prior to abrasion on surface topography of restorative materials. J Biomed Mater Res B Appl Biomater 2003; 65(2):227-32. doi: 10.1002/jbm.b.10005.

WHO. The selection and use of essential medicines. Report of the WHO expert committee, 2005 (including the 14th model list of essential medicines). World Health Organ Tech Rep Ser 2006; (933):1-119.

Peres KG, Oliveira CT, Peres MA, Raymundo Mdos S, Fett R. Sugar content in liquid oral medicines for children. Rev Saude Publica 2005; 39(3):486-89. doi: 10.1590/S0034-89102005000300022.

Sun M, Kang Q, Li T, Huang L, Jiang Y, Xia W. Effect of high-fructose corn syrup on Streptococcus mutans virulence gene expression and on tooth demineralization. Eur J Oral Sci 2014; 122(3):216-22. doi: 10.1111/eos.12132.

Valinoti AC, Pierro VS, Da Silva EM, Maia LC. In vitro alterations in dental enamel exposed to acidic medicines. Int J Paediatr Dent 2011; 21(2):141-50. doi: 10.1111/j.1365-263X.2010.01104.x.

Kumazawa K, Sawada T, Yanagisawa T, Shintani S. Effect of single-dose amoxicillin on rat incisor odontogenesis: a morphological study. Clin Oral Investig 2012; 16(3):835-42. doi: 10.1007/s00784-011-0581-4.

Reidenberg MM. World Health Organization program for the selection and use of essential medicines. Clin Pharmacol Ther 2007; 81(4):603-6. doi: 10.1038/sj.clpt.6100106.

Maguire A, Baqir W, Nunn JH. Are sugars-free medicines more erosive than sugars-containing medicines? An in vitro study of paediatric medicines with prolonged oral clearance used regularly and long-term by children. Int J Paediatr Dent 2007; 17(4):231-8. doi: 10.1111/j.1365-263X.2007.00826.x.

Fidalgo TKS, Pithon MM, do Santos RL, de Alencar NA, Abrahão AC, Maia LC. Influence of topical fluoride application on mechanical properties of orthodontic bonding materials under pH cycling. Angle Orthod 2012; 82(6):1071-7. doi: 10.2319/101711-644.1.

Lammers PC, Borggreven JM, Driessens FC. Acid-susceptibility of lesions in bovine enamel after remineralization at different pH values and in the presence of different fluoride concentrations. J Dent Res 1991; 70(12):1486-90.

Queiroz CS, Hara AT, Leme AFP, Cury JA. pH-cycling models to evaluate the effect of low fluoride dentifrice on enamel de- and remineralization. Braz Dent J 2008; 19(1):21-7. doi: 10.1590/S0103-64402008000100004.

Passalini P, Fidalgo TK, Caldeira EM, Gleiser R, Nojima Mda C, Maia LC. Mechanical properties of one and twostep fluoridated orthodontic resins submitted to different pH cycling regimes. Braz Oral Res 2010; 24:197-203. doi: 10.1590/S1806-83242010000200012.

Passalini P, Fidalgo TK, Caldeira EM, Gleiser R, Nojima Mda C, Maia LC. Preventive effect of fluoridated orthodontic resins subjected to high cariogenic challenges. Braz Dent J 2010; 21(3):211-5. doi: 10.1590/S0103-64402010000300006.

Nicholson JW, Millar BJ, Czarnecka B, Limanowska-Shaw H. Storage of polyacid-modified resin composites ("compomers") in lactic acid solution. Dent Mater 1999; 15(6):413-6. doi: 10.1016/S0109-5641(99)00067-6.

Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit Rev Oral Biol Med 2001;12(2):136-51.

Ruse ND. What is a "compomer"? J Can Dent Assoc 1999; 65(9):500-4.

Nicholson JW, Czarnecka B. The release of ions by compomers under neutral and acidic conditions. J Oral Rehabil 2004; 31(7):665-70. doi: 10.1111/j.1365-2842.2004.01291.x.

Hara AT, Ando M, González-Cabezas C, Cury JA, Serra MC, Zero DT. Protective effect of the dental pellicle against erosive challenges in situ. J Dent Res 2006; 85(7):612-16. doi: 10.1177/154405910608500706.

Finer Y, Jaffer F, Santerre JP. Mutual influence of cholesterol esterase and pseudocholinesterase on the biodegradation of dental composites. Biomaterials 2004; 25(10):1787-93. doi: 10.1016/j.biomaterials.2003.08.029.

Anuradha BR, Katta S, Kode VS, Praveena C, Sathe N, Sandeep N, Penumarty S. Oral and salivary changes in patients with chronic kidney disease: A clinical and biochemical study. J Indian Soc Periodontol 2015; 19(3):297-301. doi: 10.4103/0972-124X.154178.

Elad S, Heisler S, Shalit M. Saliva secretion in patients with allergic rhinitis. Int Arch Allergy Immunol 2006; 141(3):276-80. doi: 10.1159/000095297.

Handelman SL, Baric JM, Espeland MA, Berglund KL. Prevalence of drugs causing hyposalivation in an institutionalized geriatric population. Oral Surg Oral Med Oral Pathol 1986; 62(1):26-31.

Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dental Mater 1997; 13(4:)258-69.

Bollen CM, Papaioanno W, Van Eldere J, Schepers E, Quirynen M, van Steenberghe D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin Oral Implants Res 1996; 7(3):201-11.

Guler AU, Güler E, Yücel AC, Ertaş E. Effects of polishing procedures on color stability of composite resins. J Appl Oral Sci 2009; 17(2):108-12. doi: 10.1590/S1678-77572009000200007.

Kenny DJ, Somaya P. Sugar load of oral liquid medications on chronically ill children. J Can Dent Assoc 1989; 55(1):43-6.

Barbour ME, Lussi A. Erosion in relation to nutrition and the environment. Monogr Oral Sci 2014; 25:143-54. doi: 10.1159/000359941.

Hannig M, Fiebiger M, Güntzer M, Döbert A, Zimehl R, Nekrashevych Y. Protective effect of the in situ formed short-term salivary pellicle. Arch Oral Biol 2004; 49(11):903-10. doi: 10.1016/j.archoralbio.2004.05.008.

Cober MP, Phelps SJ. Penicillin prophylaxis in children with sickle cell disease. J Pediatr Pharmacol Ther 2010; 15(3):152-9.

Attin T, Wegehaupt FJ. Methods for assessment of dental erosion. Monogr Oral Sci 2014; 25:123-42. doi: 10.1159/000360355.

Tupalli AR, Satish B, Shetty BR, Battu S, Kumar JP, Nagaraju B. Evaluation of the erosive potential of various pediatric liquid medicaments: An in-vitro study. J Int Oral Health 2014; 6(1):59-65.

Neto F, Turssi CP, Serra M. Erosion-like lesions progression in human and bovine enamel. IJD Int J Dent 2010; 9(1):16-20.




DOI: http://dx.doi.org/10.4034/PBOCI.2017.171.22

PBOCI is a member of CrossRef and all the content of its journals are linked by DOIs through CrossRef.