Evaluation of Peri-Implant Bone Reduction Levels from Superimposition Perspective: Pilot Study among Ukrainian Implantology Practice

Myroslav Goncharuk-Khomyn, Keniuk Andrii


Objective: To evaluate the possibility and efficiency of using adapted peri-implant bone evaluation method based on the principle of graphical superimposition and compare it to the possibilities of using sagittal sections of CBCT results to register the dynamics of peri-implant bone changes during the first year of implant functioning. Material and Methods: 108 pairs of DICOM data sets were selected and pre-anonymized and coded in Planmeca Romexis® Viewer software. Each pair of datasets consisted of a CBCT file, obtained immediately after the installation of a dental implant, and one year after its operation. The first method of peri-implant bone changes evaluation was carried out by analyzing the sagittal sections of the CBCT data from the mesial and distal sides of the implant. The second method was followed by original algorithm, which included specific steps of superimposition of graphical images. Results: Superimposition method helped to establish volumetric parameter of circular bone reduction around dental implants after 1 year of their functioning. Such average values for the maxillary distal implants were 3.547 mm3, maxillary frontal implants – 3.118 mm3, mandibular distal implants – 2.614 mm3, mandibular frontal implants – 2.456 mm 3. Correlation values between averages of vertical bone loss parameters and volumetric bone loss parameters riches r=0.954. Among all patients the highest peri-implant bone reduction rates were observed in the distal and frontal areas of the maxilla, even though statistical difference among such parameters of implants installed at the areas of mandible and maxilla was not significant (p > 0.05). Such observation was established during the analysis of results obtained both by digital sagittal cross section from CBCT results and by superimposition method. Conclusion: Using the superimposition principle allows us to evaluate the individual indicator of volumetric bone loss at the peri-implant region. The possibility of taking into account the parameters of bone tissue volume reduction, instead of just geometrical parameter of bone height, allows to individualize the parameters of bone loss among patients of different prosthetic rehabilitation group.


Dental Implants; Alveolar Bone Loss; Cone-Beam Computed Tomography.

Full Text:



Kwon T, Bain PA, Levin L. Systematic review of short- (5–10 years) and long-term (10 years or more) survival and success of full-arch fixed dental hybrid prostheses and supporting implants. J Dent 2014; 42(10):1228-41. doi: 10.1016/j.jdent.2014.05.016.

Rossi F, Botticelli D, Cesaretti G, De Santis E, Storelli S, Lang NP. Use of short implants (6 mm) in a single‐tooth replacement: A 5‐year follow‐up prospective randomized controlled multicenter clinical study. Clin Oral Implants Res 2016; 27(4):458-64. doi: 10.1111/clr.12564.

Jimbo R, Albrektsson T. Long-term clinical success of minimally and moderately rough oral implants: A review of 71 studies with 5 years or more of follow-up. Implant Dent 2015; 24(1):62-9. doi: 10.1097/ID.0000000000000205.

Wittneben JG, Buser D, Salvi GE, Bürgin W, Hicklin S, Brägger U. Complication and failure rates with implant‐supported fixed dental prostheses and single crowns: A 10‐year retrospective study. Clin Implant Dent Relat Res 2014; 16(3):356-64. doi: 10.1111/cid.12066.

Moraschini V, Poubel LDC, Ferreira VF, dos SP Barboza E. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. Int J Oral Maxillofac Surg 2015; 44(3):377-88. doi: 10.1016/j.ijom.2014.10.023.

Albrektsson T, Zarb GA, Worthington P. The long term efficacy of currently used dental implants: A review and proposed criteria of success. Int J Oral Maxillofac Impl 1986; 1(1):11-25.

Misch CE, Misch-Dietsh F, Silc J, Barboza E, Cianciola LJ, Kazor C. Posterior implant single-tooth replacement and status of adjacent teeth during a 10-year period: A retrospective report. J Periodontol 2008; 79(12):2378-82. doi: 10.1902/jop.2008.080188.

Buser D, Janner SF, Wittneben JG, Brägger U, Ramseier CA, Salvi GE. 10‐year survival and success rates of 511 titanium implants with a sandblasted and acid‐etched surface: A retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res 2012; 14(6):839-51. doi: 10.1111/j.1708-8208.2012.00456.x

Misch CE, Perel ML, Wang HL, Sammartino G, Galindo-Moreno P, Trisi P, Schwartz-Arad D. Implant success, survival, and failure: The International Congress of Oral Implantologists (ICOI) pisa consensus conference. Implant Dent 2008; 17(1):5-15. doi: 10.1097/ID.0b013e3181676059.

Papaspyridakos P, Chen CJ, Singh M, Weber HP, Gallucci GO. Success criteria in implant dentistry: A systematic review. J Dent Res 2012; 91(3):242-8. doi: 10.1177/0022034511431252.

Galindo‐Moreno P, León‐Cano A, Ortega‐Oller I, Monje A, Catena A. Marginal bone loss as success criterion in implant dentistry: Beyond 2 mm. Clin Oral Implants Res 2015; 26(4):e28-34. doi: 10.1111/clr.12324.

Ritter L, Elger MC, Rothamel D, Fienitz T, Zinser M, Schwarz F, Zöller JE. Accuracy of peri-implant bone evaluation using cone beam CT, digital intra-oral radiographs and histology. Dentomaxillofac Radiol 2012; 43(6):20130088. doi: 10.1259/dmfr.20130088.

De Bruyn H, Vandeweghe S, Ruyffelaert C, Cosyn J, Sennerby L. Radiographic evaluation of modern oral implants with emphasis on crestal bone level and relevance to peri‐implant health. Periodontol 2000 2013; 62(1):256-70. doi: 10.1111/prd.12004.

Rusyn V, Goncharuk-Khomyn M. Alternative approach for the registration of peri-implant bone level changes at the remote rehabilitation period. Morphologia 2016; 10(2):77-84.

Giavarina D. Understanding bland altman analysis. Biochem Med 2015; 25(2):141-51. doi: 10.11613/BM.2015.015.

Dave M, Davies J, Wilson R, Palmer R. A comparison of cone beam computed tomography and conventional periapical radiography at detecting peri‐implant bone defects. Clin Oral Implants Res 2012; 24(6):671-8. doi: 10.1111/j.1600-0501.2012.02473.x.

Huang Y, Van Dessel J, Depypere M, EzEldeen M, Iliescu AA, Dos Santos E, Jacobs R. Validating cone-beam computed tomography for peri-implant bone morphometric analysis. Bone Res 2014; 2:14010. doi: 10.1038/boneres.2014.10.

Gupta J, Ali SP. Cone beam computed tomography in oral implants. Natl J Maxillofac Surg 2013; 4(1):2-6. doi: 10.4103/0975-5950.117811.

Correia A, Villarinho E, Vigo A, Ramos NV, Vaz M, Shinkai R. Volumetric bone changes around dental implants, the use of 3D image superimposition. Clin Oral Implants Res 2017; 28(Suppl.14):245. doi: 10.1111/clr.244_13042.

Ajanović M, Hamzić A, Redžepagić S, Kamber-Ćesir A, Kazazić L, Tosum S. Radiographic evaluation of crestal bone loss around dental implants in maxilla and mandible: One year prospective clinical study. Acta Stomatol Croat 2015; 49(2):128-36. doi: 10.15644/asc49/2/6.

Babbush CA, Tallarico M. Twelve-year clinical and radiological results of maxillary and mandibular implant-retained bar overdentures carried out on oxidized (TiUnite) replace select implants: A clinical case. J Oral Implantol 2012; 39(6):737-42. doi: 10.1563/AAID-JOI-D-12-00311.

Anitua E, Orive G. Short implants in maxillae and mandibles: A retrospective study with 1 to 8 years of follow-up. J Periodontol 2010; 81(6):819-26. doi: 10.1902/jop.2010.090637.

Peñarrocha M, Palomar M, Sanchis JM, Guarinos J, Balaguer J. Radiologic study of marginal bone loss around 108 dental implants and its relationship to smoking, implant location, and morphology. Int J Oral Maxillofac Implants 2004; 19(6):861-7.

Chung DM, Oh TJ, Lee J, Misch CE, Wang HL. Factors affecting late implant bone loss: A retrospective analysis. Int J Oral Maxillofac Implants 2007; 22(1):117-26.

Bryant SR, Zarb GA. Crestal bone loss proximal to oral implants in older and younger adults. J Prosthet Dent 2003; 89(6):589-97. doi: 10.1016/S0022391303001999.

Lee HJ, Kim YK, Park JY, Kim SG, Kim MJ, Yun PY. Short-term clinical retrospective study of implants in geriatric patients older than 70 years. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110(4):442-6. doi: 10.1016/j.tripleo.2010.02.019.

Çehreli MC, Karasoy D, Kökat AM, Akca K, Eckert S. A systematic review of marginal bone loss around implants retaining or supporting overdentures. Int J Oral Maxillofac Implants 2010; 25(2):266-77. doi: 10.1016/S0022-3913(10)60181-3.

Mumcu E, Bilhan H, Cekici A. Marginal bone loss around implants supporting fixed restorations. J Oral Implantol 2011; 37(5):549-58. doi: 10.1563/AAID-JOI-D-10-00018.

Bilhan H, Mumcu E, Arat S. The comparison of marginal bone loss around mandibular overdenture‐supporting implants with two different attachment types in a loading period of 36 months. Gerodontology 2011; 28(1):49-57. doi: 10.1111/j.1741-2358.2009.00334.x.

Lee S, Chung CK, Oh SH, Park SB. Correlation between bone mineral density measured by dual-energy X-ray absorptiometry and Hounsfield units measured by diagnostic CT in lumbar spine. J Korean Neurosurg Soc 2013; 54(5):384-9. doi: 10.3340/jkns.2013.54.5.384.

Mah P, Reeves TE, McDavid WD. Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofac Radiol 2010; 39(6):323-35. doi: 10.1259/dmfr/19603304.

DOI: http://dx.doi.org/10.4034/PBOCI.2018.181.10