Types of Rickets, Dental and Histologic Findings: Review of the Literature

Tipos de Raquitismo, Aspectos Dentários e Histológicos: Revisão de Literatura

E. Caner TÜMEN¹, İzzet YAVUZ², Fatma ATAKUL³

¹Assistant Professor, Dicle University, Faculty of Dentistry, Department of Pedodontics, Diyarbakır, Turkey.
²Associate Professor, Dicle University, Faculty of Dentistry, Department of Pedodontics, Diyarbakır, Turkey.
³Professor and Chair, Dicle University, Faculty of Dentistry, Department of Pedodontics, Diyarbakır, Turkey.

Introduction: A disease that occurs during childhood, rickets is the failure of growing bone to mineralize. Many skeletal and radiographic changes can occur because of the lack of calcified osteoid and the buildup of unossified cartilage. Proper bone formation requires a complex interplay of several organs and chemicals, and vitamin D deserves special mention because any disturbance in its production, absorption, or metabolism is paramount in the development of rickets. The pathophysiology of the disease is thought to be impaired phosphate transport, especially decreased phosphate resorption in the renal proximal tubule, as well as in the intestine. In most cases, the diagnosis is established with a thorough history and physical examination and confirmed by laboratory evaluation. Early diagnosis is essential because morbidity can be minimized if children are treated before eight months of age.

Objective: The aim of this literature review is to present various types of rickets with clinical features and the dental findings, preventive measurements and treatments.

Conclusion: The dentist as well as the pediatrician should be made aware of the features of this disorder so that early intervention can prevent subsequent serious and more invasive dental procedures.

KEYWORDS
Rickets; Hypophosphataemia; Oral manifestations; Therapeutics.
INTRODUCTION

Rickets develops when growing bones fail to mineralize. In most cases, the diagnosis is established with a thorough history and physical examination and confirmed by laboratory evaluation. Early diagnosis is essential because morbidity can be minimized if children are treated before eight months of age.

Human beings maintain adequate levels of vitamin D by producing it from cholesterol or by absorbing it from ingested food sources. Sunlight is a vital component necessary for the production of vitamin D, which begins in the skin and ends in the kidney. In skin, vitamin D production begins with conversion of 7-dehydrocholesterol to vitamin D3 because of ultraviolet light. Another source of vitamin D is dietary intake of vitamins D2 and D3. Vitamin D3 is converted in the liver to 25(OH)D3, or calcidiol, the major circulating form of vitamin D. The enzyme 25(OH)D3-1-a-hydroxylase in the kidney converts calcidiol to 1,25(OH)2D3 or calcitriol, the most active form of vitamin D.

Recently, 2 theories on impaired phosphate transport have been proposed. One is an impairment of the sodium-dependent phosphate transporter, and the other is a phosphatic factor that increases phosphate excretion. However, impaired 1α(OH)2D metabolism has also been suggested. Various types of rickets with clinical features and treatments defined on Table 18,9-15.

The aim of this literature review is to present various types of rickets with clinical features and the dental findings, preventive measurements and treatments.

LITERATURE REVIEW

Types of Rickets

Nutritional rickets results from inadequate sunlight exposure or inadequate intake of dietary vitamin D, calcium, or phosphorus. A diet deficient in calcium, such as one dependent on nonfortified milk substitutes, can lead to rickets. Nutritional rickets presents in the first two years of life with short stature, gait abnormality, developmental delay, and characteristic findings (Table 18,9-15 and Table 2). Commonly, infants younger than six months present with hypocalcemic tetany or seizures, whereas older children present with failure to thrive or skeletal deformities.

Vitamin D–dependent rickets, type I results from abnormalities in the gene coding for 25(OH)D3-1-a-hydroxylase, and type II is a rare autosomal disorder caused by mutations in the vitamin D receptor. Type II does not respond to vitamin D treatment; elevated levels of circulating calcitriol differentiate this type from type I.

The vitamin D–resistant types are familial hypophosphatemic rickets and hereditary hypophosphatemic rickets with hypercalciuria. Rickets refractory to vitamin D treatment may be caused by the most common heritable form, known as vitamin D–resistant rickets or familial hypophosphatemic rickets.

Hypophosphatemic vitamin D-resistant rickets or X-linked hypophosphataemia (XLH) is a hereditary disease manifesting marked hypophosphataemia caused by renal tubular loss of phosphate into urine and an associated decrease in the calcium and potassium ion product. Normal levels of calcitriol are found in this disorder. Albright et al.4,13, are the first reported by Albright et al.2, is a syndrome showing marked hypophosphataemia, short stature, and rickets. In general, the main abnormality is considered to be a congenital impairment of phosphate transport and hypophosphatemia, resulting from decreased phosphate reabsorption in the brush border membrane on the luminal side of the proximal renal tubule and impaired phosphate reabsorption in the intestine.

X-linked hypophosphataemia (XLH) is also characterized by growth retardation, osteomalacic bone disease and hypophosphataemia. Sporadic cases are often initially detected by limb deformity or gait abnormality. The systemic findings of XLH include bowed legs because of a body load showing immature skeletal bone calcification, spinal curvature deformities and beading of the ribs called rachitic rosary.

Other causes of rickets include renal disease, medications, and malabsorption syndromes (Table 18,9-15).

Clinical Presentation and Diagnosis

General physical examination revealed typical bowing of the legs, marked genu valgum, rachitic rosary and growth retardation. Genu valgum or “knock-knee” deformity results in circumduction, a gait that requires the individual to swing each leg outward while walking to avoid striking the planted limb with the moving limb. Rachitic rosary is the name given to the bead-like enlargements of the costochondral junctions.

The diagnosis of rickets is made upon a physical exam, and confirmed by blood tests and X-rays. In children with rickets, complete physical and dental examinations should be performed. The entire skeletal system must be palpated to search for tenderness and bony abnormalities (Table 2). Bowlegs in the absence of other findings are
relatively common in normal children in the first two years of life; rickets should be suspected in older bowlegged children and in cases associated with asymmetry, pain, or progression in severity. Gait disturbances in the ambulatory child and neurologic abnormalities (such as hyperreflexia) in all children should be sought.

Laboratory and Radiographic Findings

Laboratory investigation may include serum levels of calcium (total and ionized with serum albumin), phosphorus, alkaline phosphatase, parathyroid hormone, urea nitrogen, creatinine, and calcidiol. Urine studies include urinalysis and levels of urinary calcium and phosphorus. The serum level of calcidiol is indicative of the patient’s overall vitamin D status. Although calcitriol is the active form of vitamin D it has a short half-life and circulates at a concentration that is 1,000 to 2,000 times less than calcidiol. Depending on the stage of the disease, laboratory values can vary.

An anteroposterior radiograph of rapidly growing skeletal areas, such as the knee or wrist, is most helpful in diagnosing rickets. The skeletal changes caused by rickets usually are most pronounced at the knees, wrists, and anterior rib ends (rachitic rosary). Classic radiographic findings include widening of the distal physis, fraying and widening of the metaphysis, and angular deformities of the arm and leg bones.

Table 1. Various Types of Rickets with Clinical Features and Treatments.

<table>
<thead>
<tr>
<th>Type</th>
<th>Causes</th>
<th>Inheritance pattern</th>
<th>Clinical features</th>
<th>Treatment*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutritional rickets or vitamin D-deficiency rickets</td>
<td>Vitamin D deficiency, phosphorus or calcium deficiency (rare), inadequate sunlight exposure, secondary to malabsorption syndromes (IBD, celiac disease, cystic fibrosis [rarely])</td>
<td>NA</td>
<td>Skeletal findings, abnormal gait, hypocalcemic tetany/seizures, developmental delay, failure to thrive</td>
<td>Replace the deficient nutrient orally; may need to administer vitamin D intramuscularly if rickets secondary to malabsorption.</td>
</tr>
<tr>
<td>Vitamin D-dependent rickets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type I or pseudovitamin D-deficiency rickets</td>
<td>Deficiency of renal 25(OH)D-1-25-hydroxylase</td>
<td>Autosomal recessive</td>
<td>Younger than two years, hypocalcemic tetany, severe bony changes, seizures</td>
<td>Calcitriol (Rocaltrol)</td>
</tr>
<tr>
<td>Type II or hereditary 1 alpha, 25 dihydroxyvitamin D-resistant rickets</td>
<td>Defective interaction between calcitriol and receptor</td>
<td>Autosomal recessive</td>
<td>Younger than one year, severe bony changes, alopecia</td>
<td>Massive doses of calcitriol and calcium</td>
</tr>
<tr>
<td>Vitamin D-resistant rickets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Familial hypophosphatemic rickets or X-linked hypophosphatemic rickets</td>
<td>Impaired proximal renal tubular reabsorption of phosphorus and inappropriately normal calcitriol levels</td>
<td>X-linked dominant</td>
<td>Short stature, leg bowing, dental abnormalities</td>
<td>Oral phosphate and calcitriol</td>
</tr>
<tr>
<td>Hereditary hypophosphatemic rickets with hypercalciuria</td>
<td>Impaired proximal renal tubular reabsorption of phosphorus and increased calcitriol</td>
<td>Autosomal recessive, autosomal dominant</td>
<td>Bone pain, muscular weakness</td>
<td>Oral phosphate</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal rickets or renal osteodystrophy</td>
<td>Loss of functional renal parenchyma caused by chronic renal failure leads to mineral derangements and decreased calcitriol production</td>
<td>NA</td>
<td>Bone pain, arthralgias, fractures, muscle weakness, failure to thrive</td>
<td>Vitamin D and phosphate-binding compound</td>
</tr>
<tr>
<td>Rickets of prematurity</td>
<td>Multifactorial</td>
<td>NA</td>
<td>Osteopenia, fractures</td>
<td>Replace dietary deficiencies and minimize iatrogenic causes.</td>
</tr>
<tr>
<td>Tumor-induced or oncogenic rickets</td>
<td>Tumor-induced inhibition of renal 25(OH)D-1-alpha-hydroxylase</td>
<td>NA</td>
<td>Fractures, bone pain, muscle weakness</td>
<td>Treat underlying malignancy.</td>
</tr>
</tbody>
</table>

IBD = inflammatory bowel disease; NA = not applicable; PTH = parathyroid hormone. *Must closely monitor serum calcium, phosphorus, and alkaline phosphatase levels; renal function; urine calcium levels; and radiographic results.
Histologic findings of teeth in XLH include enlarged pulp chambers, wide predentin, marked globular dentin, and tubular dentinal defects extending from the pulp to the enamel. Enamel hypoplasia may or may not be present.32,41

Prognosis and Therapy

Treatment goals are to relieve symptoms and correct the cause of the condition. With regard to nutritional rickets, the most important role of the primary care physician is helping parents prevent it. Along with sun protection advice, measures needed to prevent nutritional rickets must be stressed to the child’s caregivers. Besides all exclusively breastfed infants, some older children also may need vitamin D supplementation.30. Researchers have suggested an appropriate amount of sunlight exposure for infants (i.e., 30 minutes per week if only in a diaper and two hours per week if fully clothed), but the exact amount needed for a particular child is not known.

Because vitamin D–dependent rickets, type I is caused by lack of production of calcitriol, treatment requires the replacement of that active product. The treatment of type II is more complex, and consultation with a child’s nephrologist is advised.

Familial hypophosphatemic rickets is treated with oral phosphorus and calcitriol (Rocaltril), whereas hereditary hypophosphatemic rickets with hypercalcemia requires replacement of oral phosphorus alone.

Investigators stress that treatment begun early in life lessens the disease burden.46 To ensure early treatment, infants of affected parents must be screened often for hypophosphatemia and increased levels of serum alkaline phosphatase.

After treatment initiation, all patients will require careful monitoring of serum calcium, phosphorus, alkaline phosphatase, and calcidiol levels and of urine calcium and phosphorus levels. A spot urine calcium to creatinine ratio should be followed to detect hypercalcemia. Adjustments to medications are made to accommodate any abnormal fluctuations in serum or urine values. The earliest biochemical change after treatment initiation is a rise in the level of phosphorus followed by calcium within the first week. Radiographic changes may be evident within a week, and physical examination findings may normalize within six months. No matter which treatment course is chosen, the physician has to closely monitor the child’s progress.20

Dental care of these patients should consist of periodic examinations, topical fluoride applications, pit and fissure sealants and maintenance of good oral hygiene. Some authors advocate extraction of teeth that present periradicular abscesses and eventual restoration with...
implants; however, endodontic and restorative treatment may not be able to maintain asepsis. The incompletely mineralized dentin exists in the form of calciospherites, which trap microorganisms and also impede mechanical endodontic cleaning\(^{47,48}\). The practitioner must conclude that the occurrence of spontaneous abscesses following a shallow cavity preparation necessitates aggressive preventive dental procedures.

Application of prefabricated metal or polycarbonate crowns for primary teeth without caries has been reported to be effective for prevention of attrition and enamel microfracture\(^{17}\). Prophylactic coverage of teeth of rickets cases with stainless steel crowns on molars and composite resin on the other teeth should be applied. In addition, the thin dentin layer perforates easily and does not support restorative posts for prosthetic crowns. This treatment should be carried out with caution and crown preparation should be minimal to avoid inadvertent pulp exposure. Another critical factor is the loss of vertical dimensions if multiple posterior primary teeth need to be extracted. Thus, there is a delicate balance between the benefits and possible risks of using stainless steel crowns. However, this aggressive preventive method cannot be adopted in all patients with XLH, because not all the pulp tissue is infected and iatrogenic pulp infection may occur during the tooth crown preparation.

In patients with Rickets, the dentition is highly susceptible to dental caries or attrition, and bacteria can invade easily from the oral cavity to dental pulp by menas of structural defects in enamel and dentin, resulting in pulpsitis. Therefore, pit and fissure sealants are useful when the teeth are erupting as they prevent ingress of bacteria into the enamel microfractures as well as initiation of caries in the deep pits and fissures. Also, in patients with this disorder, professional dental care consisting of periodic examinations, topical fluoride applications and maintenance of good oral hygiene is imperative.

CONCLUSION

The dentist as well as the pediatrician should be made aware of the features of this disorder so that early intervention can prevent subsequent serious and more invasive dental procedures.

REFERENCES

