Cytotoxicity, Morphology and Chemical Composition of Two Luting Cements: An in Vitro Study
Keywords:
Dental Materials, Dental Cements, Zinc Phosphate Cement, FibroblastsAbstract
Objective: To assess the cytotoxicity, surface morphology, elemental compositions and chemical characterization of two commonly used luting cement. Material and Methods: The two luting types of cement used were Elite Cement® and Hy-Bond Resiglass®. Freshly mixed (n=6) and set form (n=6) of each cement was placed in medium to obtain extracts. The extract from each sample was exposed to L929 mouse fibroblasts (1x104cells/well). Alamar Blue Assay assessed cell viability. Surface morphology and elemental composition were evaluated using scanning electron microscopy and energy dispersive spectroscopy. The chemical characterization was performed by Fourier Transform Infrared Spectroscopy. One-way ANOVA and post-hoc Tukey analysis were conducted to assess results. Results: Hy-Bond Resiglass® was the more cytotoxic of the two types of cement in both freshly mixed (68.10 +5.16; p<0.05) and set state (87.58 +4.86; p<0.05), compared to Elite Cement® both freshly mixed (77.01 +5.45; p<0.05) and set state (89.39 +5.66; p<0.05). Scanning electron microscopy revealed a more irregular and porous structure in Hy-Bond Resiglass® compared to Elite Cement®. Similarly, intense peaks of aluminium, tungsten and fluorine were observed in energy dispersive spectroscopy in Hy-Bond Resiglass. Conclusion: All these three elements (aluminium, tungsten and fluorine) have cytotoxic potential. The Fourier transform infrared spectroscopy revealed the presence of hydroxyethyl methacrylate in Hy-Bond Resiglass®, which has a cytotoxic potential.
References
de la Macorra JC, Pradíes G. Conventional and adhesive luting cements. Clin Oral Investig 2002; 6(4):198-204. https://doi.org/10.1007/s00784-002-0184-1
Schmid-Schwap M, Franz A, König F, Bristela M, Lucas T, Piehslinger E, et al. Cytotoxicity of four categories of dental cements. Dent Mater 2009; 25(3):360-8. https://doi.org/10.1016/j.dental.2008.08.002
Smith DC, Ruse ND. Acidity of glass ionomer cements during setting and its relation to pulp sensitivity. J Am Dent Assoc 1986; 112(5):654-7. https://doi.org/10.14219/jada.archive.1986.0069
Trumpaite-Vanagiene R, Bukelskiene V, Aleksejuniene J, Puriene A, Baltriukiene D, Rutkunas V. Cytotoxicity of commonly used luting cements - an in vitro study. Dent Mater J 2015; 34(3):294-301. https://doi.org/10.4012/dmj.2014-185
Lad PP, Kamath M, Tarale K, Kusugal PB. Practical clinical considerations of luting cements: a review. J Int Oral Health 2014; 6(1):116-20.
Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res 2006; 85(10):870-7. https://doi.org/10.1177/154405910608501001
Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ. Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater 2004; 20(1):12-20. https://doi.org/10.1016/s0109-5641(03)00053-8
Pawińska M, Łuczaj-Cepowicz E, Kierklo A, Marczuk-Kolada G, Hołownia A. Assessment of cytotoxic potential of root canal sealers after hardening - an ex vivo study. Postepy Hig Med Dosw 2015; 69:503-9. https://doi.org/10.5604/17322693.1150134
Jung S, Sielker S, Hanisch MR, Libricht V, Schäfer E, Dammaschke T. Cytotoxic effects of four different root canal sealers on human osteoblasts. PLoS One 2018; 13(3):e0194467. https://doi.org/10.1371/journal.pone.0194467
Poggio C, Riva P, Chiesa M, Colombo M, Pietrocola G. Comparative cytotoxicity evaluation of eight root canal sealers. J Clin Exp Dent 2017; 9(4):e574-e578. https://doi.org/10.4317/jced.53724
Kwon JS, Illeperuma RP, Kim J, Kim KM, Kim KN. Cytotoxicity evaluation of zinc oxide-eugenol and non-eugenol cements using different fibroblast cell lines. Acta Odontol Scand 2014; 72(1):64-70. https://doi.org/10.3109/00016357.2013.798871
Wendt SL Jr, Ziemiecki TL, Spangberg LS. Indirect cytotoxic evaluation of dental materials. Oral Surg Oral Med Oral Pathol. 1993; 75(3):353-6. https://doi.org/10.1016/0030-4220(93)90150-3
Konjhodzic-Prcic A, Jakupovic S, Hasic-Brankovic L, Vukovic A. Evaluation of biocompatibility of root canal sealers on L929 fibroblasts with multiscan EX spectrophotometer. Acta Inform Med 2015; 23(3):135-7. https://doi.org/10.5455/aim.2015.23.135-137
Alsubait SA, Al Ajlan R, Mitwalli H, Aburaisi N, Mahmood A, Muthurangan M, et al. Cytotoxicity of different concentrations of three root canal sealers on human mesenchymal stem cells. Biomolecules 2018; 8(3):E68. https://doi.org/10.3390/biom8030068
Dumas V, Rattner A, Vico L, Audouard E, Dumas JC, Naisson P, et al. Multiscale grooved titanium processed with femtosecond laser influences mesenchymal stem cell morphology, adhesion, and matrix organization. J Biomed Mater Res A 2012; 100(11):3108-16. https://doi.org/10.1002/jbm.a.34239
Khan AS, Khalid H, Sarfraz Z, Khan M, Iqbal J, Muhammad M, et al. Vibrational spectroscopy of selective dental restorative materials. Appl Spectros Rev 2016; 52(6):507-40. https://doi.org/10.1080/05704928.2016.1244069
Cifuentes SC, Gavilán R, Lieblich M, Benavente R, González-Carrasco JL. In vitro degradation of biodegradable polylactic acid/magnesium composites: relevance of Mg particle shape. Acta Biomater 2016; 32:348-57. https://doi.org/10.1016/j.actbio.2015.12.037
Sampaio FC, Alencar AH, Guedes OA, Veloso HH, Santos TO, Estrela C. Chemical elements characterization of root canal sealers using scanning electron microscopy and energy dispersive x-ray analysis. Oral Health Dent Manag 2014; 13(1):27-34.
Prado M, Silva EJNL, Duque TM, Zaia AA, Ferraz CCR, Almeida JFA, et al. Antimicrobial and cytotoxic effects of phosphoric acid solution compared to other root canal irrigants. J Appl Oral Sci 2015; 23(2):158-63. https://doi.org/10.1590/1678-775720130691
Younas B, Khan AB, Muzaffar D, Hussain I, Chaudhry AA, Rehman IU. In situ reaction kinetic analysis of dental restorative materials. Eur Phys J Appl Phys 2013; 64(3):30701. https://doi.org/10.1051/epjap/2013130361
Vargün E, Usanmaz A. Degradation of poly (2-hydroxyethyl methacrylate) obtained by radiation in aqueous solution. J Macromol Sci Part A Pure Appl Chem 2010; 47(9):882-91. https://doi.org/10.1080/10601325.2010.501304
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Pesquisa Brasileira em Odontopediatria e Clínica Integrada
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.