Chemical Composition, Antibacterial and Antifungal Potential of an Extract From the Leaves of Guapira Graciliflora Mart. Against Oral Microorganisms of Dental Interest

Authors

  • Thiara Karine de Araújo
  • Edja Maria Melo de Brito Costa
  • Carolina Medeiros de Almeida Maia
  • Pollianna Muniz Alves
  • Cassiano Francisco Weege Nonaka
  • Priscilla Guimarães Silva
  • Rennaly de Freitas Lima
  • Gustavo Pina Godoy

Keywords:

Plants, Medicinal, Plant Extracts, Phytotherapy, Anti-Infective Agents

Abstract

Objective: To perform an in vitro analysis of antibacterial and antifungal potential of an alcoholic extract from the leaves of Guapira Graciliflora Mart. against oral microorganisms and determine its chemical composition. Material and Methods: A hydroalcoholic extract of the leaves form G.  graciliflora was obtained through maceration, vacuum concentration and freeze-drying. Antibacterial and antifungal activities were evaluated against Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus mitis and strains of Candida albicans using broth microdilution method. Phytochemical analysis determined the total phenolic compounds, protein concentration and total of sugars present in the extract. Results: G. Graciliflora demonstrated antifungal activity against the LM 11 and LM 410 clinical isolates of C. albicans (MIC 0.5 mg/mL and 2 mg/mL, respectively). The other microorganisms tested were resistant to the extract. The phytochemical analysis revealed 3% proteins, 13% total sugars and 17% phenolic compounds. Conclusion: G. Graciliflora has antifungal activity against clinical strains of C. albicans and exhibits proteins, sugars and phenolic compounds in its chemical composition.

References

Wade WG. The oral microbiome in health and disease. Pharmacol Res 2013; 69(1):137-43. https://doi.org/10.1016/j.phrs.2012.11.006

Baker JL, Bor B, Agnello M, Shi W, He X. Ecology of the oral microbiome: beyond bacteria. Trends Microbiol 2017; 25(5):362-74. https://doi.org/10.1016/j.tim.2016.12.012

Swidergall M, Filler SG. Oropharyngeal candidiasis: fungal invasion and epithelial cell responses. PLoS Pathog 2017; 13(1):e1006056. https://doi.org/10.1371/journal.ppat.1006056

Rudick CP, Miyamoto T, Lang MS, Agrawal DK.Triggering receptor expressed on myeloid cells in the pathogenesis of periodontitis: potential novel treatment strategies. Expert Rev Clin Immunol 2017; 13(12):1189-97. https://doi.org/10.1080/1744666X.2017.1392855

Bowen WH, Burne RA, Wu H, Koo H. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol 2018; 26(3):229-42. https://doi.org/10.1016/j.tim.2017.09.008

Kampf G. Acquired resistance to chlorhexidine - is it time to establish an ‘antiseptic stewardship’ initiative?. J Hosp Infect 2016; 94(3):213-27. https://doi.org/10.1016/j.jhin.2016.08.018

Łukaszuk C, Krajewska-Kułak E, Kułak W. Retrospective observation of drug susceptibility of Candida strains in the years 1999, 2004, and 2015. PeerJ 2017; 5:e3038. https://doi.org/10.7717/peerj.3038

Wang H, Xu YC, Hsueh PR. Epidemiology of candidemia and antifungal susceptibility in invasive Candida species in the Asia-Pacific region. Future Microbiol 2016; 11(11):1461-77. https://doi.org/10.2217/fmb-2016-0099

Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79(3):629-61. https://doi.org/10.1021/acs.jnatprod.5b01055

Chaves TP, Santana CP, Véras G, Brandão DO, Felismino DC, Medeiros ACD, et al. Seasonal variation in the production of secondary metabolites and antimicrobial activity of two plant species used in Brazilian traditional medicine. Afric J Biotechnol 2013; 12(8):847-53. https://doi.org/10.5897/AJB12.2579

Siqueira CF, Cabral DL, Peixoto Sobrinho TJ, de Amorim EL, de Melo JG, Araújo TA, et al. Levels of tannins and flavonoids in medicinal plants: evaluating bioprospecting strategies. Evid Based Complement Alternat Med 2012; 2012:434782. https://doi.org/10.1155/2012/434782

Da Costa JG, Campos AR, Brito SA, Pereira CK, Souza EO, Rodrigues FF. Biological screening of Araripe basin medicinal plants using Artemia salina Leach and pathogenic bacteria. Pharmacogn Mag 2010; 6(24):331-4. https://doi.org/10.4103/0973-1296.71792

Rocha EALSS, Carvalho AVOR, de Andrade SRA, Medeiros ACD, Trovão DMBM, Costa EMMB. Antimicrobial potential of six plants from the semiarid zone of Paraíba State (Brazil) against bacteria related to endodontic infection. Rev Ciênc Farm Básica Apl 2013; 34(3):351-5.

Almeida CM, Lima RF, Costa TKVLD, Sousa IMO, Cabral EC, Basting RT, et al. Antifungal, antibiofilm, and antiproliferative activities of Guapira graciliflora Mart. Braz Oral Res 2018; 32:e41. https://doi.org/10.1590/1807-3107bor-2018.vol32.0041

March-Salas M, Fitze PS. Changes in environmental predictability alter a plant’s chemical composition and associated ecosystem services. Environ Exp Bot 2019; 168:103865. https://doi.org/10.1016/j.envexpbot.2019.103865

Prinsloo G, Nogemane N. The effects of season and water availability on chemical composition, secondary metabolites and biological activity in plants. Phytochem Rev 2018; 17:889-902. https://doi.org/10.1007/s11101-018-9567-z

Clinical and Laboratory Standards Institute. M27-A3. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved Standard. 3rd. ed. 2008; 28(14):1-25.

Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. CLSI standard M07. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.

Holetz FB, Pessini GL, Sanches NR, Cortez DA, Nakamura CV, Dias Filho BP. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem Inst Oswaldo Cruz 2002; 97(7):1027-31. https://doi.org/10.1590/s0074-02762002000700017

Folin O, Ciocalteu V. On tyrosine and tryptophane determinations in proteins. J Biol Chem 1927; 73(2):627-50.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72(1-2):248-54. https://doi.org/10.1006/abio.1976.9999

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugar, and related substances. Anal Chem 1956; 28(3):350-6. https://doi.org/10.1021/ac60111a017

Garcia-Cuesta C, Sarrion-Pérez MG, Bagán JV. Current treatment of oral candidiasis: a literature review. J Clin Exp Dent 2014; 6(5):e-576-82. https://doi.org/10.4317/jced.51798

Klingspor L, Tortorano AM, Peman J, Willinger B, Hamal P, Sendid B, et al. Invasive Candida infections in surgical patients in intensive care units: a prospective, multicentre survey initiated by the European Confederation of Medical Mycology (ECMM) (2006-2008). Clin Microbiol Infect 2015; 21(1):87. https://doi.org/10.1016/j.cmi.2014.08.011

Strollo S, Lionakis MS, Adjemian J, Steiner CA, Prevots DR. Epidemiology of hospitalizations associated with invasive Candidiasis, United States, 2002–2012. Emerg Infect Dis 2016; 23(1):7-13. https://doi.org/10.3201/eid2301.161198

Silva SRS, Demuner AJ, Barbosa LCA, Andrade NJ, Nascimento EA, Pinheiro AL. Analysis of chemical constituents and antimicrobial activity of essential oil of Mameluca alternifolia Cheel. Rev Bras Plantas Med 2003; 6(1):63-70.

Ncube B, Finnie JF, Van Staden J. Seasonal variation in antimicrobial and phytochemical properties of frequently used medicinal bulbous plants from South Africa. S Afr J Bot 2011; 77(2):387-96. https://doi.org/10.1016/j.sajb.2010.10.004

Jeon JG, Rosalen PL, Falsetta ML, Koo H. Natural products in caries research: current (limited) knowledge, challenges and future perspective. Caries Res 2011; 45(3):243-63. https://doi.org/10.1159/000327250

Rinaldo D, Rodrigues CM, Rodrigues J, Sannomiya M, Santos LC, Vilegas W. New flavone from the leaves of Neea theifera (Nyctaginaceae). J Braz Chem Soc 2007; 18(6):1132-5. https://doi.org/10.1590/S0103-50532007000600005

Severi JA, Fertig O, Plitzko I, Vilegas W, Hamburger M, Potterat O. Oleanane saponins and glycerogalactolipid from the leaves of Guapira graciliflora. Helv Chim Acta 2010; 93(6):1058-66. https://doi.org/10.1002/hlca.201000071

He X, Bai Y, Zhao Z, Wang X, Fang J, Huang L, et al. Local and traditional uses, phytochemistry, and pharmacology of Sophora japonica L.: a review. J Etnopharmacol 2016; 187:160-82. https://doi.org/10.1016/j.jep.2016.04.014

Ozçelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol 2011; 49(4):396-401. https://doi.org/10.3109/13880209.2010.519390

Rashed K, Butmariu M. Antimicrobial and antioxidant activities of Bauhinia racemosa Lam. and chemical content. Iran J Pharm Res 2014; 13(3):1073-80.

Mendes LPM, Maciel KM, Vieira ABR, Mendonça LCV, Silva RMF, Rolim Neto PJ, et al. Antimicrobial activity of ethanol extracts of Peperomia pellucida and Portulaca pilosa. Rev Ciênc Farm Básica Apl 2011; 32(1):121-5.

Silva MJD, Endo LH, Dias A, Silva GA, Santos MH, Silva MA. Assessment of the antioxidant and antimicrobial activity of the organic extracts and fractions of Mimosa caesalpiniifolia Benth. (Mimosaceae). Rev Ciênc Farm Básica Apl 2012; 33(2):267-74.

Eerdunbayaer, Orabi MA, Aoyama H, Kuroda T, Hatano T. Structures of two new flavonoids and effects of licorice phenolics on vancomycin-resistant Enterococcus species. Molecules 2014; 19(4):3883-97. https://doi.org/10.3390/molecules19043883

Ben Hassine D, Abderrabba M, Yvon Y, Lebrihi A, Mathieu F, Couderc F, et al. Chemical composition and in vitro evaluation of the antioxidant and antimicrobial activities of Eucalyptus gillii essential oil and extracts. Molecules 2012; 17(8):9540-58. https://doi.org/10.3390/molecules17089540

Agarie S, Kawaguchi A, Kodera A, Sunagawa H, Kojima H, Nose A, et al. Potential of the commonice plant, Mesembryanthemum crystallinum as a newhigh-functional food as evaluated by polyol accumulation. Plant Prod Sci 2009; 12(1):37-46. https://doi.org/10.1626/pps.12.37

Zakaria ZA, Rofiee MS, Mohamed AM, Teh LK, Salleh MZ. In vitro antiproliferative and antioxidant activities and total phenolic contents of the extracts of Melastoma malabathricum leaves. J Acunpunct Meridian Stud 2011; 4(4):248-56. https://doi.org/10.1016/j.jams.2011.09.016

Lins R, Vasconcelos FHP, Leita RB, Coelho-Soares RS, Barbosa DN. Clinical evaluation of mouthwash with extracts from aroeira (Schinus terebinthifolius) and chamomile (Matricaria recutita L.) on plaque and gingivitis. Rev Bras Plantas Med 2013; 15(1):112-20. https://doi.org/10.1590/S1516-05722013000100016

Downloads

Published

2022-03-19

How to Cite

de Araújo, T. K. ., Costa, E. M. M. de B. ., Maia, C. M. de A. ., Alves, P. M. ., Nonaka, C. F. W. ., Silva, P. G. ., Lima, R. de F. ., & Godoy, G. P. . (2022). Chemical Composition, Antibacterial and Antifungal Potential of an Extract From the Leaves of Guapira Graciliflora Mart. Against Oral Microorganisms of Dental Interest. Pesquisa Brasileira Em Odontopediatria E Clínica Integrada, 20, e5165. Retrieved from https://revista.uepb.edu.br/PBOCI/article/view/1122

Issue

Section

Original Articles