Antibacterial and Antiadhesion Effects of Psidium guajava Fractions on a Multispecies Biofilm Associated with Periodontitis
Keywords:
Psidium, Biofilms, Gram-Negative BacteriaAbstract
Objective: To assess the antibacterial activity of Psidium guajava fractions and their effects on adhesion of a multispecies biofilm consisting of Streptococcus gordonii, Fusobacterium nucleatum, and Porphyromonas gingivalis in vitro. Material and Methods: Guava leaves were obtained from the mountains of northern Peru, where they grow wild and free of pesticides. The antimicrobial activity of 25 mg/mL petroleum ether, 25 mg/mL dichloromethane and 25 mg/mL methanol fractions of P. guajava was evaluated by measuring inhibition halos, as well as the effect on the adhesion of multispecies biofilms at 4, 7 and 10 days of growth by measuring the optical density. In addition, antimicrobial susceptibility was compared using the Kruskal-Wallis test and its multiple comparison tests, and differences in mean biofilm adhesion between each fraction were assessed by repeated measures analysis and the Tukey multiple comparison test. Results: The rank-based Kruskal-Wallis test highlighted differences in the effects of the fractions on the zone of inhibition for each oral bacterium, including S. gordonii(p=0.000), F. nucleatum (p=0.000), and P. gingivalis (p=0.000), the Tukey test showed that the group treated with 0.12% chlorhexidine exhibited the least amount of adhesion, followed by the group treated with the 1.56 mg/mL methanol fraction. Conclusion: The methanol fraction of P. guajava had an antibacterial effect on S. gordonii and P. gingivalis, and the 1.56 mg/mL methanol fraction decreased biofilm adhesion.References
Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RLJ. Microbial complexes in subgingival plaque. J Clin Periodontol 1998; 25(2): 134-44. https://doi.org/10.1111/j.1600-051X.1998.tb02419.x
Kolenbrander PE, Palmer RJJ, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol 2010; 8(7):471-80. https://doi.org/10.1038/nrmicro2381
Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 2012; 27(6):409-19. https://doi.org/10.1111/j.2041-1014.2012.00663.x
Millones-Gómez P, Aguilar A. Eficacia de la azitromicina asociada al RAR en periodontitis crónica: ensayo clínico, aleatorizado, controlado y triple ciego en grupos en paralelo. Rev Esp Cirug Oral Maxilofac 2018; 40(3):129-34. https://doi.org/10.1016/j.maxilo.2017.08.001
Pensantes-Sangay SJ, Calla-Poma RD, Requena-Mendizabal MF, Alvino-Vales MI, Millones-Gómez PA. Chemical composition and antibacterial effect of plantago major extract on periodontal pathogens. Pesqui Bras Odontopediatria Clín Integr 2020; 20:e0012. https://doi.org/10.1590/pboci.2020.100
Rodríguez JAL, Casana STV, Gómez PAM. Effectiveness of chlorhexidine and essential oils associated with scaling and root planing in the treatment of chronic periodontitis. Rev Cienc Salud 2020; 18(3):1-11. https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.9795
Figueredo CM, Lira-Junior R, Love RM. T and B cells in periodontal disease: new functions in A complex scenario. Int J Mol Sci 2019; 20(16):3949. https://doi.org/10.3390/ijms20163949
Millones-Gómez PA, Amaranto REB, Torres DJM, Calla-Poma RD, Requena-Mendizabal MF, Alvino-Vales MI, et al. Identification of proteins associated with the formation of oral biofilms. Pesqui Bras Odontopediatria Clín Integr 2021; 21:e0128. https://doi.org/10.1590/pboci.2021.084
Wang RP, Ho YS, Leung WK, Goto T, Chang RC. Systemic inflammation linking chronic periodontitis to cognitive decline. Brain Behav Immun 2019; 81:63-73. https://doi.org/10.1016/j.bbi.2019.07.002
Abiko Y, Sato T, Mayanagi G, Takahashi N. Profiling of subgingival plaque biofilm microflora from periodontally healthy subjects and from subjects with periodontitis using quantitative real-time PCR. J Periodontal Res 2010; 45(3):389-95. https://doi.org/10.1111/j.1600-0765.2009.01250.x
Belstrøm D, Grande MA, Sembler-Møller ML, Kirkby N, Cotton SL, Paster BJ, et al. Influence of periodontal treatment on subgingival and salivary microbiotas. J Periodontol 2018; 89(5):531-9. https://doi.org/10.1002/jper.17-0377
Demoliner F, Policarpi PDB, Vasconcelos LFL, Vitali L, Micke GA, Block JM. Sapucaia nut (Lecythis pisonis Cambess) and its by-products: a promising and underutilized source of bioactive compounds. Part II: phenolic compounds profile. Food Res Int 2018; 112:434-42. https://doi.org/10.1016/j.foodres.2018.06.050
Nhu TQ, Dam NP, Bich Hang BT, Bach LT, Thanh Huong DT, Buu Hue BT, et al. Immunomodulatory potential of extracts, fractions and pure compounds from Phyllanthus amarus and Psidium guajava on striped catfish (Pangasianodon hypophthalmus) head kidney leukocytes. Fish Shellfish Immunol 2020; 104:289-303. https://doi.org/10.1016/j.fsi.2020.05.051
Qin XJ, Yu Q, Yan H, Khan A, Feng MY, Li PP, et al. Meroterpenoids with Antitumor Activities from Guava (Psidium guajava). J Agric Food Chem 2017; 65(24):4993-9. https://doi.org/10.1021/acs.jafc.7b01762
Lin CY, Yin MC. Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice. Plant Foods Hum Nutr 2012; 67(3):303-8. https://doi.org/10.1007/s11130-012-0294-0
Hassan EM, El Gendy AEG, Abd-ElGawad AM, Elshamy AI, Farag MA, Alamery SF, et al. Comparative chemical profiles of the essential oils from different varieties of Psidium guajava L. Molecules 2020; 26(1):119. https://doi.org/10.3390/molecules26010119
Millones-Gómez PA, Maurtua-Torres D, Bacilio-Amaranto R, Calla-Poma RD, Requena-Mendizabal MF, Valderrama-Negron AC, et al. Antimicrobial activity and antiadherent effect of peruvian Psidium guajava (Guava) leaves on a cariogenic biofilm model. J Contemp Dent Pract 2020; 21(7):733-40. https://doi.org/10.5005/jp-journals-10024-2893
Shetty YS, Shankarapillai R, Vivekanandan G, Shetty RM, Reddy CS, Reddy H, et al. Evaluation of the efficacy of guava extract as an antimicrobial agent on periodontal pathogens. J Contemp Dent Pract 2018; 19(6):690-7. https://doi.org/10.5005/jp-journals-10024-2321
Adiguzel A, Ozer H, Sokmen M, Gulluce M, Sokmen A, Kilic H, et al. Antimicrobial and antioxidant activity of the essential oil and methanol extract of Nepeta cataria. Pol J Microbiol 2009; 58(1):69-76.
Ebersole JL, Peyyala R, Gonzalez OA. Biofilm-induced profiles of immune response gene expression by oral epithelial cells. Mol Oral Microbiol 2019; 34(1):10.1111/omi.12251. https://doi.org/10.1111/omi.12251
Montgomery D. Design and Analysis of Experiments. Hoboken, NJ: John Wiley & Sons, Inc.; 2000. pp: 105-110.
Bermúdez-Vásquez MJ, Granados-Chinchilla F, Molina A. Composición química y actividad antimicrobiana del aceite esencial de Psidium guajava y Cymbopogon citratus. Agron Mesoam 2019; 30(1):147-63. https://doi.org/10.15517/am.v30i1.33758
Millones Gómez PA. Mouthwashes in Covid 19: benefit or harm to the oral microbiome? Oral Dis 2021; 10.1111/odi.13975. https://doi.org/10.1111/odi.13975.
Bacilio R, Millones P. Efectividad analgésica del clonixinato de lisina asociado con el paracetamol en el tratamiento posoperatorio de exodoncias. Rev Cienc Salud 2019; 17(2):321-33. https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.7943
Ravi K, Divyashree P. Psidium guajava: a review on its potential as an adjunct in treating periodontal disease. Pharmacogn Rev 2014; 8(16):96-100. https://doi.org/10.4103/0973-7847.134233
Shekar C, Nagarajappa R, Singh R, Thakur R. Antimicrobial efficacy of Acacia nilotica, Murraya koenigii L. Sprengel, Eucalyptus hybrid, and Psidium guajava on primary plaque colonizers: an in vitro comparison between hot and cold extraction process. J Indian Soc Periodontol 2015; 19(2):174-9. https://doi.org/10.4103/0972-124x.145814
Blanco-Olano J, Millones-Gómez P. Cicatrizing effect of Aloe vera gel with Erythroxylum coca in animal model. Med Nat 2020; 14(1):65-74.
Esonye C, Onukwuli OD, Anadebe VC, Ezeugo JNO, Ogbodo NJ. Application of soft-computing techniques for statistical modeling and optimization of Dyacrodes edulis seed oil extraction using polar and non-polar solvents. Heliyon 2021; 7(3):e06342. https://doi.org/10.1016/j.heliyon.2021.e06342
Manner S, Skogman M, Goeres D, Vuorela P, Fallarero A. Systematic exploration of natural and synthetic flavonoids for the inhibition of Staphylococcus aureus biofilms. Int J Mol Sci 2013; 14(10):19434-51. https://doi.org/10.3390/ijms141019434
Vandeputte OM, Kiendrebeogo M, Rasamiravaka T, Stévigny C, Duez P, Rajaonson S, et al. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology (Reading) 2011; 157(Pt 7):2120-32. https://doi.org/10.1099/mic.0.049338-0
Vu B, Chen M, Crawford RJ, Ivanova EP. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 2009; 14(7):2535-54. https://doi.org/10.3390/molecules14072535
Sánchez MC, Alonso-Español A, Ribeiro-Vidal H, Alonso B, Herrera D, Sanz M. Relevance of biofilm models in periodontal research: from static to dynamic systems. Microorganisms 2021; 9(2):428. https://doi.org/10.3390/microorganisms9020428
Marchesan JT, Moss K, Morelli T, Teles FR, Divaris K, Styner M, Ribeiro AA, Webster-Cyriaque J, Beck J. Distinct microbial signatures between periodontal profile classes. J Dent Res 2021; 100(12):1405-13. https://doi.org/10.1177/00220345211009767
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Pesquisa Brasileira em Odontopediatria e Clínica Integrada
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.