Mechanical Properties of Mini-Implants Used in Extra-Radicular Anchorage

Authors

  • Gabriela Barros Lopes
  • Matheus Melo Pithon
  • Carolina Morsani Mordente
  • Lincoln Issamu Nojima
  • Martinho Campolina Rebello Horta
  • Dauro Douglas Oliveira
  • Rodrigo Vilamarim Soares

Keywords:

Orthodontic Anchorage Procedures, Stainless Steel, Titanium, Orthodontics

Abstract

Objective: To evaluate the mechanical properties of mini-implants (MIs) manufactured from stainless steel and compare them with conventional titanium-aluminum-vanadium alloy MIs. Material and Methods: The following groups were formed: G1 (n=24), 8×1.5 mm steel MIs; G2 (n=24), 12×2.0 mm steel MIs; and G3 (n=24), 10×1.5 mm titanium MIs. The 72 MIs were inserted in the infra zygomatic crest region of the maxilla and retromolar trigone in the jaw of 10 pigs. Pull-out, insertion torque, fracture and percussion tests were performed in order to measure the tensile strength, primary stability and fracture strength of MIs. A digital torque gauge was used to measure insertion and fracture torque, a universal mechanical testing machine was used for pull-out testing and a periotest device was used to measure the micromovement of MIs. For morphological and MI component evaluation, scanning electron microscopy (SEM) was performed. D'Agostino & Pearson, Kruskal-Wallis, and Dunn post-hoc and normality tests were used. Results:G2 insertion and fracture torques were significantly higher than G1 and G3 insertion and fracture torques (p<0.05). The pull-out and percussion tests presented similar values among the groups. SEM revealed that the fracture point was predominantly on the fourth thread for steel MIs (G1 and G2) and on the seventh thread for titanium-aluminum-vanadium MIs (G3). Conclusion: The mechanical properties of stainless steel MIs are superior to those of titanium-aluminum-vanadium alloy MIs.

References

Dalvi AC, Elias CN. Implantes ortodônticos de aço inoxidável. RMC 2015; 32:53-63. [In Portuguese].

Gracco A, Giagnorio C, Incerti Parenti S, Alessandri Bonetti G, Siciliani G. Effects of thread shape on the pullout strength of miniscrews. Am J Orthod Dentofacial Orthop 2012; 142(2):186-90. https://doi.org/10.1016/j.ajodo.2012.03.023

Paiva LGJ, Garcia RR, Júnior HC, Santana FF, Carvalho G, Estrela CB. Utilização de mini-implantes em intrusão de molares na recuperação de espaço protético inferior para reabilitação com implantes dentários. Rev Odontol Bras Central 2015; 24(69):88-91. https://doi.org/10.36065/robrac.v24i69.720 [In Portuguese].

Motoyoshi M, Uemura M, Ono A, Okazaki K, Shigeeda T, Shimizu N. Factors affecting the long-term stability of orthodontic mini-implants. Am J Orthod Dentofacial Orthop 2010; 137(5):588.e1-5; discussion 588-9. https://doi.org/10.1016/j.ajodo.2009.05.019

Almeida MR. Biomecânica de distalização dento alveolar com mini-implantes extra-alveolares em paciente Classe I com biprotrusão. Rev Clín Ortod Dental Press 2017; 16(6):61-76. https://doi.org/10.14436/1676-6849.16.6.061-076 [In Portuguese].

Chang CH, Lin JS, Roberts WE. Failure rates for stainless steel versus titanium alloy infrazygomatic crest bone screws: A single-center, randomized double-blind clinical trial. Angle Orthod 2019; 89(1):40-6. https://doi.org/10.2319/012518-70.1

Scribante A, Montasser MA, Radwan ES, Bernardinelli L, Alcozer R, Gandini P, et al. Reliability of orthodontic miniscrews: bending and maximum load of different Ti-6Al-4V titanium and stainless steel temporary anchorage devices (TADs). Materials 2018; 11(7):1138. https://doi.org/10.3390/ma11071138

Nucera R, Lo Giudice A, Bellocchio AM, Spinuzza P, Caprioglio A, Perillo L, et al. Bone and cortical bone thickness of mandibular buccal shelf for mini-screw insertion in adults. Angle Orthod 2017; 87(5):745-51. https://doi.org/10.2319/011117-34.1

Chang C, Liu SS, Roberts WE. Primary failure rate for 1680 extra-alveolar mandibular buccal shelf mini-screws placed in movable mucosa or attached gingiva. Angle Orthod 2015; 85(6):905-10. https://doi.org/10.2319/092714.695.1

Chang JZ, Chen YJ, Tung YY, Chiang YY, Lai EH, Chen WP, et al. Effects of thread depth, taper shape, and taper length on the mechanical properties of mini-implants. Am J Orthod Dentofacial Orthop 2012; 141(3):279-88. https://doi.org/10.1016/j.ajodo.2011.09.008

Pithon MM, Nojima MG, Nojima LI. Primary stability of orthodontic mini-implants inserted into maxilla and mandible of swine. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113(6):748-54. https://doi.org/10.1016/j.tripleo.2011.06.021

Seifi M, Matini NS. Evaluation of primary stability of innovated orthodontic miniscrew system (STS): An ex-vivo study. J Clin Exp Dent 2016; 8(3):e255-9. https://doi.org/10.4317/jced.52676

Hosein YK, Dixon SJ, Rizkalla AS, Tassi A. A comparison of the mechanical measures used for assessing orthodontic mini-implant stability. Implant Dent 2017; 26(2):225-31. https://doi.org/10.1097/ID.0000000000000514

Tepedino M, Masedu F, Chimenti C. Comparative evaluation of insertion torque and mechanical stability for self-tapping and self-drilling orthodontic miniscrews - an in vitro study. Head Face Med 2017; 13(1):10. https://doi.org/10.1186/s13005-017-0143-3

Lim SA, Cha JY, Hwang CJ. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod 2008; 78(2):234-40. https://doi.org/10.2319/121206-507.1

Pithon MM, Nojima MG, Nojima LI. In vitro evaluation of insertion and removal torques of orthodontic mini-implants. Int J Oral Maxillofac Surg 2011; 40(1):80-5. https://doi.org/10.1016/j.ijom.2010.09.013

Tseng YC, Wu JH, Ting CC, Chen HS, Chen CM. Evaluation of mechanical strengths of three types of mini-implants in artificial bones. Kaohsiung J Med Sci 2017; 33(2):96-101. https://doi.org/10.1016/j.kjms.2016.11.001

Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 2003; 124(4):373-8. https://doi.org/10.1016/s0889-5406(03)00565-1

Wilmes B, Drescher D. Impact of bone quality, implant type, and implantation site preparation on insertion torques of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Surg 2011; 40(7):697-703. https://doi.org/10.1016/j.ijom.2010.08.008

Meursinge Reynders RA, Ronchi L, Ladu L, van Etten-Jamaludin F, Bipat S. Insertion torque and success of orthodontic mini-implants: a systematic review. Am J Orthod Dentofacial Orthop 2012; 142(5):596-614.e5. https://doi.org/10.1016/j.ajodo.2012.06.013

Exposto CR, Oz U, Westgate PM, Huja SS. Influence of mini-screw diameter and loading conditions on static and dynamic assessments of bone-implant contact: An animal study. Orthod Craniofac Res 2019; 22(Suppl 1):96-100. https://doi.org/10.1111/ocr.12293

Marquezan M, Souza MM, Araujo MT, Nojima LI, Nojima Mda C. Is miniscrew primary stability influenced by bone density? Braz Oral Res 2011; 25(5):427-32. https://doi.org/10.1590/s1806-83242011000500009

Pithon MM, Figueiredo DS, Oliveira DD. Mechanical evaluation of orthodontic mini-implants of different lengths. J Oral Maxillofac Surg 2013; 71(3):479-86. https://doi.org/10.1016/j.joms.2012.10.002

Marquezan M, Mattos CT, Sant'Anna EF, de Souza MM, Maia LC. Does cortical thickness influence the primary stability of miniscrews?: A systematic review and meta-analysis. Angle Orthod 2014; 84(6):1093-103. https://doi.org/10.2319/093013-716.1

Morarend C, Qian F, Marshall SD, Southard KA, Grosland NM, Morgan TA, et al. Effect of screw diameter on orthodontic skeletal anchorage. Am J Orthod Dentofacial Orthop 2009; 136(2):224-9. https://doi.org/10.1016/j.ajodo.2007.07.031

Burmann PF, Ruschel HC, Vargas IA, de Verney JC, Kramer PF. Titanium alloy orthodontic mini-implants: scanning electron microscopic and metallographic analyses. Acta Odontol Latinoam 2015; 28(1):42-7. https://doi.org/10.1590/S1852-48342015000100006

Nienkemper M, Santel N, Honscheid R, Drescher D. Orthodontic mini-implant stability at different insertion depths: Sensitivity of three stability measurement methods. J Orofac Orthop 2016; 77(4):296-303. https://doi.org/10.1007/s00056-016-0036-2

Nienkemper M, Wilmes B, Panayotidis A, Pauls A, Golubovic V, Schwarz F, et al. Measurement of mini-implant stability using resonance frequency analysis. Angle Orthod 2013; 83(2):230-8. https://doi.org/10.2319/043012-354.1

Uemura M, Motoyoshi M, Yano S, Sakaguchi M, Igarashi Y, Shimizu N. Orthodontic mini-implant stability and the ratio of pilot hole implant diameter. Eur J Orthod 2012; 34(1):52-6. https://doi.org/10.1093/ejo/cjq157

Serra G, Morais L, Elias CN, Semenova IP, Valiev R, Salimgareeva G, et al. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants. Mater Sci Eng C Mater Biol Appl 2013; 33(7):4197-202. https://doi.org/10.1016/j.msec.2013.06.012

Downloads

Published

2023-07-22

How to Cite

Lopes, G. B., Pithon, M. M., Mordente, C. M., Nojima, L. I., Horta, M. C. R., Oliveira, D. D., & Soares, R. V. (2023). Mechanical Properties of Mini-Implants Used in Extra-Radicular Anchorage. Pesquisa Brasileira Em Odontopediatria E Clínica Integrada, 23, e210155. Retrieved from https://revista.uepb.edu.br/PBOCI/article/view/2366

Issue

Section

Original Articles