Antibacterial Effect of Hypochlorous Acid on Bacteria Associated with the Formation of Periodontal Biofilms: An in vitro Pilot Study

Authors

  • Pablo Alejandro Millones-Gómez
  • Marcos Novoa-Herrera
  • Dora Jesús Maurtua-Torres
  • Reyma Evelyn Bacilio-Amaranto
  • Margarita Fe Requena-Mendizábal
  • Roger Calla-Poma
  • Tania Valentina Rosales-Cifuentes
  • Federico Martin Malpartida-Quispe
  • Carlos Alberto Minchón-Medina
  • Julio César Romero-Gamboa
  • Melissa Pinella-Vega
  • Roberto Carlos Ojeda-Gómez

Keywords:

Microbiology, Anti-Bacterial Agents, Hypochlorous Acid, Sodium Hypochlorite

Abstract

Objective: To evaluate the antibacterial effect of electrolytically generated hypochlorous acid on Streptococcus gordonii, Fusobacterium nucleatum, and Porphyromonas gingivalis. Material and Methods: In this in vitro experiment, the effect of hypochlorous acid (HOCl) on the strains S. gordonii, F. nucleatum, and P. gingivalis was evaluated using 4% sodium hypochlorite, 0.12% chlorhexidine, and distilled water as controls. The four groups were placed on each plate, and each group was replicated five times. The agar diffusion method by zones measurement was used. The data were processed with SPSS using the Kruskal-Wallis test and multiple comparison tests. Results: Hypochlorous acid showed an average inhibition halo of 9.28 mm on S. gordonii. As expected with distilled water, no zone of inhibition was noted for any of the bacteria, nor were zones of inhibition observed with HOCl for F. nucleatum and P. gingivalis. Conclusion: Hypochlorous acid showed antimicrobial properties against only S. gordonii and was less effective than 4% sodium hypochlorite and 0.12% chlorhexidine, although no significant differences were found between the latter.

References

Takahashi N. Oral microbiome metabolism: From "who are they?" to "what are they doing?" J Dent Res 2015; 94(12):1628-37. https://doi.org/10.1177/0022034515606045

Rodríguez JAL, Casana STV. Effectiveness of chlorhexidine and essential oils associated with scaling and root planing in the treatment of chronic periodontitis. Rev Cienc Salud 2020; 18(3):1-11.

Amaranto REB, Millones-Gómez P. Efectividad analgésica del clonixinato de lisina asociado con el paracetamol en el tratamiento posoperatorio de exodoncias. Rev Cienc Salud 2019; 17(2):321-33. https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.7943 [In Spanish].

Muras A, Otero-Casal P, Blanc V, Otero A. Acyl homoserine lactone-mediated quorum sensing in the oral cavity: a paradigm revisited. Sci Rep 2020; 10(1):9800. https://doi.org/10.1038/s41598-020-66704-4

Gray MJ, Wholey WY, Jakob U. Bacterial responses to reactive chlorine species. Annu Rev Microbiol 2013; 67:141-60. https://doi.org/10.1146/annurev-micro-102912-142520

Wang L, Bassiri M, Najafi R, Najafi K, Yang J, Khosrovi B, et al. Hypochlorous acid as a potential wound care agent: part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity. J Burns Wounds 2007; 6:e5.

Selkon JB, Cherry GW, Wilson JM, Hughes MA. Evaluation of hypochlorous acid washes in the treatment of chronic venous leg ulcers. J Wound Care 2006; 15(1):33-7. https://doi.org/10.12968/jowc.2006.15.1.26861

Sam CH, Lu HK. The role of hypochlorous acid as one of the reactive oxygen species in periodontal disease. J Dent Sci 2009; 4(2):45-54. https://doi.org/10.1016/S1991-7902(09)60008-8

Hakim H, Thammakarn C, Suguro A, Ishida Y, Kawamura A, Tamura M, et al. Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments. J Vet Med Sci 2015; 77(2):211-5. https://doi.org/10.1292/jvms.14-0413

Millones-Gómez PA, Maurtua-Torres D, Bacilio-Amaranto R, Calla-Poma RD, Requena-Mendizabal MF, Valderrama-Negron AC, et al. Antimicrobial activity and antiadherent effect of peruvian Psidium guajava (Guava) leaves on a cariogenic biofilm model. J Contemp Dent Pract 2020; 21(7):733-40. https://doi.org/10.5005/jp-journals-10024-2893

Millones Gómez PA, Tay Chu Jon LY, Maurtua Torres DJ, Bacilio Amaranto RE, Collantes Díaz IE, Medina CAM. Antibacterial, antibiofilm, and cytotoxic activities and chemical compositions of Peruvian propolis in an in vitro oral biofilm. F1000 Res 202; 10:1093. https://doi.org/10.12688/f1000research.73602.1

Kriswandini IL, Diyatri I, Tantiana, Nuraini P, Berniyanti T, Putri IA, et al. The forming of bacteria biofilm from Streptococcus mutans and Aggregatibacter actinomycetemcomitans as a marker for early detection in dental caries and periodontitis. Infect Dis Rep 2020; 12(Suppl 1):8722. https://doi.org/10.4081/idr.2020.8722

Millones-Gómez PA, Amaranto REB, Torres DJM, Calla-Poma RD, Requena-Mendizabal MF, Alvino-Vales MI, et al. Identification of proteins associated with the formation of oral biofilms. Pesqui Bras Odontopediatria Clin Integr 2021; 21:e0128. https://doi.org/10.1590/pboci.2021.084

Sarduy Bermúdez L, González Díaz ME. Biofilm: a new conception of dentobacterial plaque. Medicentro 2016; 20(3):167-75.

Ishihara M, Murakami K, Fukuda K, Nakamura S, Kuwabara M, Hattori H, et al. Stability of weakly acidic hypochlorous acid solution with microbicidal activity. Biocontrol Sci 2017; 22(4):223-7. https://doi.org/10.4265/bio.22.223

Veasey S, Muriana PM. Evaluation of electrolytically-generated hypochlorous acid ('electrolyzed water') for sanitation of meat and meat-contact surfaces. Foods 2016; 5(2):42. https://doi.org/10.3390/foods5020042

Green JN, Kettle AJ, Winterbourn CC. Protein chlorination in neutrophil phagosomes and correlation with bacterial killing. Free Radic Biol Med 2014; 77:49-56. https://doi.org/10.1016/j.freeradbiomed.2014.08.013

Stroman DW, Mintun K, Epstein AB, Brimer CM, Patel CR, Branch JD, et al. Reduction in bacterial load using hypochlorous acid hygiene solution on ocular skin. Clin Ophthalmol 2017; 11:707-14. https://doi.org/10.2147/opth.s132851

Overholt B, Reynolds K, Wheeler D. 1151. A safer, more effective method for cleaning and disinfecting gi endoscopic procedure rooms. Open Forum Infect Dis 2018; 5(Suppl 1):S346. https://doi.org/10.1093/ofid/ofy210.984

Wolfe MK, Gallandat K, Daniels K, Desmarais AM, Scheinman P, Lantagne D. Handwashing and Ebola virus disease outbreaks: A randomized comparison of soap, hand sanitizer, and 0.05% chlorine solutions on the inactivation and removal of model organisms Phi6 and E. coli from hands and persistence in rinse water. PLoS One 2017; 12(2):e0172734. https://doi.org/10.1371/journal.pone.0172734

Morita C, Nishida T, Ito K. Biological toxicity of acid electrolyzed functional water: effect of oral administration on mouse digestive tract and changes in body weight. Arch Oral Biol 2011; 56(4):359-66. https://doi.org/10.1016/j.archoralbio.2010.10.016

Fu X, Kassim SY, Parks WC, Heinecke JW. Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem 2003; 278(31):28403-9. https://doi.org/10.1074/jbc.M304739200

Wang L, Bassiri M, Najafi R, Najafi K, Yang J, Khosrovi B, et al. Hypochlorous acid as a potential wound care agent: Part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity. J Burns Wounds 2007; 6:e5.

Castillo DM, Castillo Y, Delgadillo NA, Neuta Y, Jola J, Calderón JL, et al. Viability and effects on bacterial proteins by oral rinses with hypochlorous acid as active ingredient. Braz Dent J 2015; 26(5):519-24. https://doi.org/10.1590/0103-6440201300388

Lafaurie GI, Zaror C, Díaz-Báez D, Castillo DM, De Ávila J, Trujillo TG, et al. Evaluation of substantivity of hypochlorous acid as an antiplaque agent: a randomized controlled trial. Int J Dent Hyg 2018; 16(4):527-34. https://doi.org/10.1111/idh.12342

Chen CJ, Chen CC, Ding SJ. Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro. Int J Mol Sci 2016; 17(7):1-5. https://doi.org/10.3390/ijms17071161

Downloads

Published

2023-10-10

How to Cite

Millones-Gómez, P. A., Novoa-Herrera, M., Maurtua-Torres, D. J., Bacilio-Amaranto, R. E., Requena-Mendizábal, M. F., Calla-Poma, R., Rosales-Cifuentes, T. V., Malpartida-Quispe, F. M., Minchón-Medina, C. A., Romero-Gamboa, J. C., Pinella-Vega, M., & Ojeda-Gómez, R. C. (2023). Antibacterial Effect of Hypochlorous Acid on Bacteria Associated with the Formation of Periodontal Biofilms: An in vitro Pilot Study. Pesquisa Brasileira Em Odontopediatria E Clínica Integrada, 23, e210078. Retrieved from https://revista.uepb.edu.br/PBOCI/article/view/2690

Issue

Section

Original Articles