Randomized Clinical Study of the Use of MTA and Biodentine™ for Pulpotomy in Primary Teeth

Authors

  • Lídia Regina da Costa Hidalgo
  • Luciano Aparecido de Almeida-Junior
  • Marília Pacífico Lucisano Politi
  • Paulo Nelson-Filho
  • Raquel Assed Bezerra Segato
  • Francisco Wanderley Garcia Paula-Silva
  • Léa Assed Bezerra da Silva

Keywords:

Pulpotomy, Tooth, Deciduous, Pediatric Dentistry, Dental Pulp Cavity

Abstract

Objective: To verify, through clinical and radiographic evaluations, the in vivo response of the dentin-pulpal complex of human primary teeth after pulpotomy with MTA and Biodentine™ in a follow-up period of 3, 6, and 12 months. Material and Methods: Thirty teeth were divided into MTA pulpotomy (n = 15) and Biodentine™ pulpotomy (n = 15) from children between 5 and 9 years of age, a randomized clinical trial with simple random sampling. The materials were inserted into the cavity after opening and removing the coronary pulp tissue. The cavity base consisted of glass ionomer cement and light-cured composite resin restoration. Clinical and radiographic analyses were performed after 3, 6, and 12 months. Statistical analysis by Fisher's exact test for dichotomous data at a 5% significance level was utilized. Results: Both materials caused color change after 12 months. However, MTA showed a higher percentage than Biodentine™ (p<0.0001). Pain was detected only with Biodentine™ at six months and mobility at 12 months (p=0.0013). Radiographically, after 12 months, periapical lesions, interradicular lesions, and internal resorption were evidenced in 13% of the cases for Biodentine™-treated teeth (p<0.0013). MTA induced pulp calcification in 13% of cases, unlike Biodentine™ (p<0.0013). Conclusion: BiodentineTM and MTA are suitable for clinical use in pulpotomy treatment, yet both materials lead to tooth discoloration.

References

Bossù M, Iaculli F, Di Giorgio G, Salucci A, Polimeni A, Di Carlo S. Different pulp dressing materials for the pulpotomy of primary teeth: a systematic review of the literature. J Clin Med 2020; 9(3):838. https://doi.org/10.3390/jcm9030838

De Rossi A, Silva LA, Gatón-Hernández P, Sousa-Neto MD, Nelson-Filho P, Silva RA, et al. Comparison of pulpal responses to pulpotomy and pulp capping with biodentine and mineral trioxide aggregate in dogs. J Endod 2014; 40(9):1362-9. https://doi.org/10.1016/j.joen.2014.02.006

Daltoé MO, Paula-Silva FW, Faccioli LH, Gatón-Hernández PM, De Rossi A, Bezerra Silva LA. Expression of mineralization markers during pulp response to biodentine and mineral trioxide aggregate. J Endod 2016; 42(4):596-603. https://doi.org/10.1016/j.joen.2015.12.018

Tawil PZ, Duggan DJ, Galicia JC. Mineral trioxide aggregate (MTA): its history, composition, and clinical applications. Compend Contin Educ Dent 2015; 36(4):247-52; quiz 254, 264.

Stringhini Junior E, Dos Santos MGC, Oliveira LB, Mercadé M. MTA and biodentine for primary teeth pulpotomy: a systematic review and meta-analysis of clinical trials. Clin Oral Investig 2019; 23(4):1967-76. https://doi.org/10.1007/s00784-018-2616-6

Pérard M, Le Clerc J, Watrin T, Meary F, Pérez F, Tricot-Doleux S, et al. Spheroid model study comparing the biocompatibility of Biodentine and MTA. J Mater Sci Mater Med 2013; 24(6):1527-34. https://doi.org/10.1007/s10856-013-4908-3 Erratum in: J Mater Sci Mater Med 2013; 24(9):2275.

Walker LA, Sanders BJ, Jones JE, Williamson CA, Dean JA, Legan JJ, et al. Current trends in pulp therapy: a survey analyzing pulpotomy techniques taught in pediatric dental residency programs. J Dent Child 2013; 80(1):31-5.

Camilleri J, Montesin FE, Juszczyk AS, Papaioannou S, Curtis RV, Donald FM, et al. The constitution, physical properties and biocompatibility of modified accelerated cement. Dent Mater 2008; 24(3):341-50. https://doi.org/10.1016/j.dental.2007.06.004

Sorrentino F. Upscaling the synthesis of tricalcium silicate and alite. Cement Wapno Beto 2008; 8:177–83.

Wang X, Chang J, Hu S. A study on the sealing ability and antibacterial activity of Ca3SiO5/CaCl2 composite cement for dental applications. Dent Mater J 2012; 31(4):617-22. https://doi.org/10.4012/dmj.2011-260

Martens LC, Rajasekharan S, Jacquet W, Vandenbulcke JD, Van Acker JWG, Cauwels RGEC. Paediatric dental emergencies: a retrospective study and a proposal for definition and guidelines including pain management. Eur Arch Paediatr Dent 2018; 19(4):245-53. https://doi.org/10.1007/s40368-018-0353-9

Septodont. Biodentine Scientific File. Active Biosilicate Technology. Saint-Maur-des-fossés, France: R&D Department, Septodont; 2010. Available from: www.septodont.fr [Accessed on 10 November, 2013]. [In French].

Villat C, Tran XV, Pradelle-Plasse N, Ponthiaux P, Wenger F, Grosgogeat B, et al. Impedance methodology: A new way to characterize the setting reaction of dental cements. Dent Mater 2010; 26(12):1127-32. https://doi.org/10.1016/j.dental.2010.07.013 Erratum in: Dent Mater 2011; 27(5):507.

Nowicka A, Lipski M, Parafiniuk M, Sporniak-Tutak K, Lichota D, Kosierkiewicz A, et al. Response of human dental pulp capped with biodentine and mineral trioxide aggregate. J Endod 2013; 39(6):743-7. https://doi.org/10.1016/j.joen.2013.01.005

Pradelle-Plasse N, Tran Xuan-Vin C. Physico-chemical properties of Biodentine. In: Goldberg M. Biocompatibility or Cytotoxic Effects of Dental Composites. 1st. ed. Oxford: Coxmoor Publishing; 2009.

Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater 2013; 29(5):580-93. https://doi.org/10.1016/j.dental.2013.03.007

Vallés M, Mercadé M, Duran-Sindreu F, Bourdelande JL, Roig M. Influence of light and oxygen on the color stability of five calcium silicate-based materials. J Endod 2013; 39(4):525-8. https://doi.org/10.1016/j.joen.2012.12.021

Opačić-Galić V, Petrović V, Zivković S, Jokanović V, Nikolić B, Knežević-Vukčević J, et al. New nanostructural biomaterials based on active silicate systems and hydroxyapatite: characterization and genotoxicity in human peripheral blood lymphocytes. Int Endod J 2013; 46(6):506-16. https://doi.org/10.1111/iej.12017

Laurent P, Camps J, De Méo M, Déjou J, About I. Induction of specific cell responses to a Ca(3)SiO(5)-based posterior restorative material. Dent Mater 2008; 24(11):1486-94. https://doi.org/10.1016/j.dental.2008.02.020

Zhou HM, Shen Y, Wang ZJ, Li L, Zheng YF, Häkkinen L, et al. In vitro cytotoxicity evaluation of a novel root repair material. J Endod 2013; 39(4):478-83. https://doi.org/10.1016/j.joen.2012.11.026

Zanini M, Sautier JM, Berdal A, Simon S. Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J Endod 2012; 38(9):1220-6. https://doi.org/10.1016/j.joen.2012.04.018

Laurent P, Camps J, About I. Biodentine(TM) induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J 2012; 45(5):439-48. https://doi.org/10.1111/j.1365-2591.2011.01995.x

Chang SW, Lee SY, Ann HJ, Kum KY, Kim EC. Effects of calcium silicate endodontic cements on biocompatibility and mineralization-inducing potentials in human dental pulp cells. J Endod 2014; 40(8):1194-200. https://doi.org/10.1016/j.joen.2014.01.001

Jung JY, Woo SM, Lee BN, Koh JT, Nör JE, Hwang YC. Effect of Biodentine and Bioaggregate on odontoblastic differentiation via mitogen-activated protein kinase pathway in human dental pulp cells. Int Endod J 2015; 48(2):177-84. https://doi.org/10.1111/iej.12298

Lee BN, Lee KN, Koh JT, Min KS, Chang HS, Hwang IN, et al. Effects of 3 endodontic bioactive cements on osteogenic differentiation in mesenchymal stem cells. J Endod 2014; 40(8):1217-22. https://doi.org/10.1016/j.joen.2014.01.036

Luo Z, Kohli MR, Yu Q, Kim S, Qu T, He WX. Biodentine induces human dental pulp stem cell differentiation through mitogen-activated protein kinase and calcium-/calmodulin-dependent protein kinase II pathways. J Endod 2014; 40(7):937-42. https://doi.org/10.1016/j.joen.2013.11.022

Sakai VT, Moretti AB, Oliveira TM, Fornetti AP, Santos CF, Machado MA, et al. Pulpotomy of human primary molars with MTA and Portland cement: a randomised controlled trial. Br Dent J 2009; 207(3):E5; discussion 128-9. https://doi.org/10.1038/sj.bdj.2009.665

Nelson-Filho P, Venturini DP, Silva RAB, Fiori-Júnior M, Mori LB. Agregado de trióxido mineral (MTA) e hidróxido de cálcio como materiais capeadores em pulpotomias de dentes decíduos de humanos - avaliação clínica e radiográfica. Rev Inst Ciênc Saúde 2005; 23(2):211-6. [In Portuguese].

American Association of Endodontists. Glossary of Endodontic Terms. 10th ed. Chicago, IL: American Association of Endodontists; 2020.

Nair PN, Duncan HF, Pitt Ford TR, Luder HU. Histological, ultrastructural and quantitative investigations on the response of healthy human pulps to experimental capping with mineral trioxide aggregate: a randomized controlled trial. Int Endod J 2008; 41(2):128-50. https://doi.org/10.1111/j.1365-2591.2007.01329.x

Hugar SM, Deshpande SD. Comparative investigation of clinical/radiographical signs of mineral trioxide aggregate and formocresol on pulpotomized primary molars. Contemp Clin Dent 2010; 1(3):146-51. https://doi.org/10.4103/0976-237X.72779

Cardoso-Silva C, Barbería E, Maroto M, García-Godoy F. Clinical study of Mineral Trioxide Aggregate in primary molars. Comparison between Grey and White MTA--a long term follow-up (84 months). J Dent 2011; 39(2):187-93. https://doi.org/10.1016/j.jdent.2010.11.010

Oliveira TM, Moretti AB, Sakai VT, Lourenço Neto N, Santos CF, Machado MA, et al. Clinical, radiographic and histologic analysis of the effects of pulp capping materials used in pulpotomies of human primary teeth. Eur Arch Paediatr Dent 2013; 14(2):65-71. https://doi.org/10.1007/s40368-013-0015-x

El Meligy OAES, Alamoudi NM, Allazzam SM, El-Housseiny AAM. BiodentineTM versus formocresol pulpotomy technique in primary molars: a 12-month randomized controlled clinical trial. BMC Oral Health 2019; 19(1):3. https://doi.org/10.1186/s12903-018-0702-4

Brar KA, Kratunova E, Avenetti D, da Fonseca MA, Marion I, Alapati S. Success of biodentine and ferric sulfate as pulpotomy materials in primary molars: a retrospective study. J Clin Pediatr Dent 2021; 45(1):22-8. https://doi.org/10.17796/1053-4625-45.1.5

Çelik BN, Mutluay MS, Arıkan V, Sarı Ş. The evaluation of MTA and Biodentine as a pulpotomy materials for carious exposures in primary teeth. Clin Oral Investig 2019; 23(2):661-6. https://doi.org/10.1007/s00784-018-2472-4

Abuelniel GM, Duggal MS, Kabel N. A comparison of MTA and Biodentine as medicaments for pulpotomy in traumatized anterior immature permanent teeth: A randomized clinical trial. Dent Traumatol 2020; 36(4):400-10. https://doi.org/10.1111/edt.12553

Cuadros-Fernández C, Lorente Rodríguez AI, Sáez-Martínez S, García-Binimelis J, About I, Mercadé M. Short-term treatment outcome of pulpotomies in primary molars using mineral trioxide aggregate and Biodentine: a randomized clinical trial. Clin Oral Investig 2016; 20(7):1639-45. https://doi.org/10.1007/s00784-015-1656-4

Vilella-Pastor S, Sáez S, Veloso A, Guinot-Jimeno F, Mercadé M. Long-term evaluation of primary teeth molar pulpotomies with Biodentine and MTA: a CONSORT randomized clinical trial. Eur Arch Paediatr Dent 2021; 22(4):685-92. https://doi.org/10.1007/s40368-021-00616-3

Eshghi A, Hajiahmadi M, Nikbakht MH, Esmaeili M. Comparison of clinical and radiographic success between MTA and biodentine in pulpotomy of primary mandibular second molars with irreversible pulpitis: a randomized double-blind clinical trial. Int J Dent 2022; 2022:6963944. https://doi.org/10.1155/2022/6963944

Downloads

Published

2023-10-25

How to Cite

Hidalgo, L. R. da C., de Almeida-Junior, L. A., Politi, M. P. L., Nelson-Filho, P., Segato, R. A. B., Paula-Silva, F. W. G., & da Silva, L. A. B. (2023). Randomized Clinical Study of the Use of MTA and Biodentine™ for Pulpotomy in Primary Teeth. Pesquisa Brasileira Em Odontopediatria E Clínica Integrada, 23, e220024. Retrieved from https://revista.uepb.edu.br/PBOCI/article/view/2729

Issue

Section

Original Articles