Evaluation of the Implant Success Rate of Titanium-based Implant Materials: A Systematic Review and Meta-Analysis
Keywords:
Dental Implants, Nanoparticles, TitaniumAbstract
Objective: To investigate the success of implants, the increase of bone integration, and the effect of nanostructure/nanoparticles as Titanium-based implant materials on the success of implants. The present study evaluated the implant success rate of Titanium-based implant materials. Material and Methods: PICO: Population (dental implant), intervention (coated titanium implant surface), comparison (uncoated titanium implant surface), and outcome (bone-implant contact) were considered as a search strategy tool and study inclusion criteria. Searches for systematic literature were conducted on databases from Scopus, Science Direct, PubMed, ISI, Web of Knowledge, and Embase until 12 December 2022. Modified CONSORT Criteria (Reporting guidelines for preclinical in vitro studies on dental materials) were used to evaluate the quality of studies. The fixed effect model and inverse-variance method were used to calculate the 95% confidence interval for mean differences. Stata/MP V.17 software was used to conduct the meta-analysis. Results: After reviewing the abstracts of 97 articles, studies not related to the inclusion criteria were excluded, and ten studies were selected from the remaining 39 studies after reviewing the full text. The mean difference in bone-implant contact between coated and uncoated dental implants was 0.25 (MD, 0.25 95% CI 0.01, 0.49; p=0.04). Conclusion: The titanium implant surface with nano coating can increase bone-implant contact and cause bone integration.References
Ghasemnia B, Kordi S, Mehraban SH, Azizi A, Moravej A, Salehi M. Evaluation of the success rate of endoscopic sinus surgery after dental implantation: A systematic review and meta-analysis. Int J Sci Res Dent Med Sci 2022; 4(3):134-139. https://doi.org/10.30485/ijsrdms.2022.359443.1362
Dank A, Aartman IH, Wismeijer D, Tahmaseb A. Effect of dental implant surface roughness in patients with a history of periodontal disease: A systematic review and meta-analysis. Int J Implant Dent 2019; 5(1):12. https://doi.org/10.1186/s40729-019-0156-8
Kunrath MF, Piassarollo dos Santos R, Dias de Oliveira S, Hubler R, Sesterheim P, Teixeira ER. Osteoblastic cell behavior and early bacterial adhesion on macro-, micro-, and nanostructured titanium surfaces for biomedical implant applications. Int J Oral Maxillofac Implants 2020; 35(4):773-781. https://doi.org/10.11607/jomi.8069
Matos GR. Surface roughness of dental implant and osseointegration. J Oral Maxillofac Surg 2021; 20(1):1-4. https://doi.org/10.1007/s12663-020-01437-5
Gongadze E, Kabaso D, Bauer S, Slivnik T, Schmuki P, van Rienen U, et al. Adhesion of osteoblasts to a nanorough titanium implant surface. Int J Nanomed 2011; 6:1801-1816. https://doi.org/10.2147/IJN.S21755
Yin C, Zhang Y, Cai Q, Li B, Yang H, Wang H, et al. Effects of the micro–nano surface topography of titanium alloy on the biological responses of osteoblast. J Biomed Mater Res A 2017; 105(3):757-769. https://doi.org/10.1002/jbm.a.35941
Puckett S, Pareta R, Webster TJ. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Int J Nanomed 2008; 3(2):229-241. https://doi.org/10.2147/ijn.s2448
Zhai P, Peng X, Li B, Liu Y, Sun H, Li X. The application of hyaluronic acid in bone regeneration. Int J Biol Macromol 2020; 151:1224-1239. https://doi.org/10.1016/j.ijbiomac.2019.10.169
Niyibizi C, Wang S, Mi Z, Robbins PD. Gene therapy approaches for osteogenesis imperfecta. Gene Ther 2004; 11(4):408-416. https://doi.org/10.1038/sj.gt.3302199
Anil S, Anand PS, Alghamdi H, Jansen JA. Dental implant surface enhancement and osseointegration. In: Turkyilmaz I. Implant Dentistry - A Rapidly Evolving Practice. London: IntechOpen; 2011.
Moravej A, Salehi M, Salehi A, Khosravi A, Yaghmoori K, Rezvan F. Evaluation of the flexural strength values of acrylic resin denture bases reinforced with silicon dioxide nanoparticles: A systematic review and meta-analysis. Int J Sci Res Dent Med Sci 2023; 5(1):21-26. https://doi.org/10.30485/ijsrdms.2023.379362.1420
Tu YK, Needleman I, Chambrone L, Lu HK, Faggion Jr CM. A Bayesian network meta‐analysis on comparisons of enamel matrix derivatives, guided tissue regeneration and their combination therapies. J Clin Periodontol 2012; 39(3):303-314. https://doi.org/10.1111/j.1600-051X.2011.01844.x
Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343:d5928. https://doi.org/10.1136/bmj.d5928
Mathew A, Abraham S, Stephen S, Babu AS, Gowd SG, Vinod V, et al. Superhydrophilic multifunctional nanotextured titanium dental implants: In vivo short and long-term response in a porcine model. Biomater Sci 2022; 10(3):728-743. https://doi.org/10.1039/D1BM01223A
Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 2010; 92(3):1218-1224. https://doi.org/10.1002/jbm.a.32463
Metzler P, von Wilmowsky C, Stadlinger B, Zemann W, Schlegel KA, Rosiwal S, et al. Nano-crystalline diamond-coated titanium dental implants–A histomorphometric study in adult domestic pigs. J Craniomaxillofac Surg 2013; 41(6):532-538. https://doi.org/10.1016/j.jcms.2012.11.020
Jimbo R, Coelho PG, Bryington M, Baldassarri M, Tovar N, Currie F, et al. Nano hydroxyapatite-coated implants improve bone nanomechanical properties. J Dent Res 2012; 91(12):1172-1177. https://doi.org/10.1177/0022034512463240
Ballo A, Agheli H, Lausmaa J, Thomsen P, Petronis S. Nanostructured model implants for in vivo studies: Influence of well-defined nanotopography on de novo bone formation on titanium implants. Int J Nanomed 2011; 6:3415-3428. https://doi.org/10.2147/IJN.S25867
Meirelles L, Melin L, Peltola T, Kjellin P, Kangasniemi I, Currie F, et al. Effect of hydroxyapatite and titania nanostructures on early in vivo bone response. Clin Implant Dent Relat Res 2008; 10(4):245-254. https://doi.org/10.1111/j.1708-8208.2008.00089.x
Lachmann S, Yves Laval J, Jäger B, Axmann D, Gomez‐Roman G, Groten M, et al. Resonance frequency analysis and damping capacity assessment: Part 2: peri‐implant bone loss follow‐up. An in vitro study with the Periotest™ and Osstell™ instruments. Clin Oral Implants Res 2006; 17(1):80-84. https://doi.org/10.1111/j.1600-0501.2005.01174.x
Ellingsen JE, Johansson CB, Wennerberg A, Holmén A. Improved retention and bone-to-implant contact with fluoride-modified titanium implants. Int J Oral Maxillofac Implants 2004; 19(5):659-666.
Salou L, Hoornaert A, Louarn G, Layrolle P. Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomater 2015; 11:494-502. https://doi.org/10.1016/j.actbio.2014.10.017
Tomsia AP, Launey ME, Lee JS, Mankani MH, Wegst UG, Saiz E. Nanotechnology approaches for better dental implants. Int J Oral Maxillofac Implants 2011; 26(Suppl):25-49.
Wang Q, Zhou P, Liu S, Attarilar S, Ma RL, Zhong Y, et al. Multi-scale surface treatments of titanium implants for rapid osseointegration: A review. Nanomater 2020; 10(6):1244. https://doi.org/10.3390/nano10061244
Ross AP, Webster TJ. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions. Int J Nanomed 2013; 8:109-117. https://doi.org/10.2147%2FIJN.S36203
Yu WQ, Xu L, Zhang FQ. The effect of Ti anodized nano-foveolae structure on preosteoblast growth and osteogenic gene expression. J Nanosci Nanotechnol 2014; 14(6):4387-4393. https://doi.org/10.1166/jnn.2014.7929
Kittur N, Oak R, Dekate D, Jadhav S, Dhatrak P. Dental implant stability and its measurements to improve osseointegration at the bone-implant interface: A review. Mater Today: Proc 2021; 43(2):1064-1070. https://doi.org/10.1016/j.matpr.2020.08.243
Luo J, Walker M, Xiao Y, Donnelly H, Dalby MJ, Salmeron-Sanchez M. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix–A review. Bioact Mater 2021; (15):145-159. https://doi.org/10.1016/j.bioactmat.2021.11.024
Tavakol S, Zahmatkeshan M, Rahvar M. Neural regeneration. In: Zare EN, Makvandi P. Electrically conducting polymers and their composites for tissue engineering. Washington: American Chemical Society; 2023.
Javadhesari SM, Alipour S, Akbarpour MR. Biocompatibility, osseointegration, antibacterial and mechanical properties of nanocrystalline Ti-Cu alloy as a new orthopedic material. Colloids Surf B: Biointerfaces 2020; 189:110889. https://doi.org/10.1016/j.colsurfb.2020.110889
Panchbhai A. Nanotechnology in dentistry. In: Asiri AM, Inamuddin, Mohammad A. Applications of nanocomposite materials in dentistry. Woodhead Publishing; 2019.
Guo CY, Matinlinna JP, Tang AT. Effects of surface charges on dental implants: Past, present, and future. Int J Biomater 2012; 381535. https://doi.org/10.1155/2012/381535
Amaral IF, Cordeiro AL, Sampaio P, Barbosa MA. Attachment, spreading and short-term proliferation of human osteoblastic cells cultured on chitosan films with different degrees of acetylation. J Biomater Sci Polym Ed 2007; 18(4):469-485. https://doi.org/10.1163/156856207780425068
Islam MM, Shahruzzaman M, Biswas S, Sakib MN, Rashid TU. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater 2020; 5(1):164-183. https://doi.org/10.1016/j.bioactmat.2020.01.012
Kokubo T, Pattanayak DK, Yamaguchi S, Takadama H, Matsushita T, Kawai T, et al. Positively charged bioactive Ti metal prepared by simple chemical and heat treatments. J R Soc Interface 2010; 7(suppl 5):S503-513. https://doi.org/10.1098/rsif.2010.0129.focus
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Pesquisa Brasileira em Odontopediatria e Clínica Integrada
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.