Anatomical Considerations for Clinical Predictability in Intraoral Defect Reconstruction: A Morphometric Study
Keywords:
Dental Implants, Therapeutics, Bone Transplantation, Mandible, HipAbstract
Objective: To analyze morphometric measurements in dry jaws, chins, and hip bones to contribute to clinical predictability in the reconstruction of grafted areas. Material and Methods: The sample comprised 619 anatomical specimens. Anatomical structures were measured at predetermined points using a digital vernier caliper. Measurements of average thickness and linear dimensions of the coronoid process, as well as the average thickness of the mentum and iliac crest points, were obtained. Results: The average morphometric measurements of anatomical structures revealed that male individuals exhibit larger values than female individuals, with a mean difference of 1.57 mm. The mean estimated bone volume of the iliac crest and iliac fossa was 21,347.19 mm³ and 21,125.56 mm³ for the left and right sides, respectively. The coronoid process displayed a smaller thickness (2.11 mm) and linear measurement (5.77 mm) in its upper portion and a larger thickness (3.63 mm) and linear measurement (14.51 mm) at its base, on average. In the mentum, the greatest average thickness was found at the midline, with a value of 12.90 mm. Conclusion: The surgeon can predict the amount of bone that can be obtained from donor areas, as well as the predominant type of bone in each area, aiming to optimize its clinical application. It is important to highlight that both the iliac crest and iliac fossa provide a significant bone volume in comparison to intraoral areas.References
Hall MB, Vallerand WP, Thompson D, Hartley G. Comparative anatomic study of anterior and posterior iliac crests as donor sites. J Oral Maxillofac Surg 1991; 49(6):560-563. https://doi.org/10.1016/0278-2391(91)90335-j
Wakankar J, Mangalekar SB, Kamble P, Gorwade N, Vijapure S, Vhanmane P. Comparative evaluation of the crestal bone level around pre- and post-loaded immediate endoosseous implants using cone-beam computed tomography: A clinico-radiographic study. Cureus 2023; 15(2):e34674. https://doi.org/10.7759/cureus.34674
Sanz I, Garcia-Gargallo M, Herrera D, Martin C, Figuero E, Sanz M. Surgical protocols for early implant placement in post-extraction sockets: A systematic review. Clin Oral Implants Res 2012; 23(Suppl 5):67-79. https://doi.org/10.1111/j.1600-0501.2011.02339.x
Branemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983; 50(3):399-410. https://doi.org/10.1016/s0022-3913(83)80101-2
Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 1977; 16:1-132.
D'Orto B, Chiavenna C, Leone R, Longoni M, Nagni M, Cappare P. Marginal bone loss compared in internal and external implant connections: Retrospective clinical study at 6-years follow-up. Biomedicines 2023; 11(4):1128. https://doi.org/10.3390/biomedicines11041128
Aghaloo T, Pi-Anfruns J, Moshaverinia A, Sim D, Grogan T, Hadaya D. The effects of systemic diseases and medications on implant osseointegration: A systematic review. Int J Oral Maxillofac Implants 2019; 34:s35-s49. https://doi.org/10.11607/jomi.19suppl.g3
Cheung MC, Hopcraft MS, Darby IB. Dental implant hygiene and maintenance protocols: A survey of oral health practitioners in Australia. J Dent Hyg 2021; 95(1):25-35.
Araújo PP, Oliveira KP, Montenegro SC, Carreiro AF, Silva JS, Germano AR. Block allograft for reconstruction of alveolar bone ridge in implantology: A systematic review. Implant Dent 2013; 22(3):304-308. https://doi.org/10.1097/ID.0b013e318289e311
Zhang S, Li X, Qi Y, Ma X, Qiao S, Cai H, et al. Comparison of autogenous tooth materials and other bone grafts. Tissue Eng Regen Med 2021; 18(3):327-341. https://doi.org/10.1007/s13770-021-00333-4
Canullo L, Pesce P, Antonacci D, Ravida A, Galli M, Khijmatgar S, et al. Soft tissue dimensional changes after alveolar ridge preservation using different sealing materials: a systematic review and network meta-analysis. Clin Oral Investig 2022; 26(1):13-39. https://doi.org/10.1007/s00784-021-04192-0
Chatelet M, Afota F, Savoldelli C. Review of bone graft and implant survival rate: A comparison between autogenous bone block versus guided bone regeneration. J Stomatol Oral Maxillofac Surg 2022; 123(2):222-227. https://doi.org/10.1016/j.jormas.2021.04.009
Jafarian M, Dehghani N. Simultaneous chin onlay bone graft using elongated coronoid in the treatment of temporomandibular joint ankylosis. J Craniofac Surg 2014; 25(1):e38-44. https://doi.org/10.1097/SCS.0b013e3182a2ee26
Sabhlok S, Waknis PP, Gadre KS. Applications of coronoid process as a bone graft in maxillofacial surgery. J Craniofac Surg 2014; 25(2):577-580. https://doi.org/10.1097/SCS.0000000000000624
Sethi A, Kaus T, Cawood JI, Plaha H, Boscoe M, Sochor P. Onlay bone grafts from iliac crest: A retrospective analysis. Int J Oral Maxillofac Surg 2020; 49(2):264-271. https://doi.org/10.1016/j.ijom.2019.07.001
Ma G, Wu C, Shao M. Simultaneous implant placement with autogenous onlay bone grafts: A systematic review and meta-analysis. Int J Implant Dent 2021; 7(1):61. https://doi.org/10.1186/s40729-021-00311-4
Cuschieri S. The STROBE guidelines. Saudi J Anaesth 2019; 13(Suppl 1):S31-S34. https://doi.org/10.4103/sja.SJA_543_18
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016; 15(2):155-163. https://doi.org/10.1016/j.jcm.2016.02.012
Ghassemi A, Schreiber L, Prescher A, Modabber A, Nanhekhan L. Regions of ilium and fibula providing clinically usable bone for mandible reconstruction: "A different approach to bone comparison". Clin Anat 2016; 29(6):773-778. https://doi.org/10.1002/ca.22732
Aalam AA, Nowzari H. Mandibular cortical bone grafts part 1: Anatomy, healing process, and influencing factors. Compend Contin Educ Dent 2007; 28(4):206-212; quiz 13.
Derks J, Ortiz-Vigon A, Guerrero A, Donati M, Bressan E, Ghensi P, et al. Reconstructive surgical therapy of peri-implantitis: A multicenter randomized controlled clinical trial. Clin Oral Implants Res 2022; 33(9):921-944. https://doi.org/10.1111/clr.13972
Keidan L, Barash A, Lenzner Z, Pick CG, Been E. Sexual dimorphism of the posterior cervical spine muscle attachments. J Anat 2021; 239(3):589-601. https://doi.org/10.1111/joa.13448
Scendoni R, Kelmendi J, Arrais Ribeiro IL, Cingolani M, De Micco F, Cameriere R. Anthropometric analysis of orbital and nasal parameters for sexual dimorphism: New anatomical evidences in the field of personal identification through a retrospective observational study. PLoS One 2023; 18(5):e0284219. https://doi.org/10.1371/journal.pone.0284219
Dean D, Hans MG, Bookstein FL, Subramanyan K. Three-dimensional bolton-brush growth study landmark data: Ontogeny and sexual dimorphism of the Bolton standards cohort. Cleft Palate Craniofac J 2000; 37(2):145-156. https://doi.org/10.1597/1545-1569_2000_037_0145_tdbbgs_2.3.co_2
Marcus S, Whitlow CT, Koonce J, Zapadka ME, Chen MY, Williams DW, 3rd, et al. Computed tomography supports histopathologic evidence of vestibulocochlear sexual dimorphism. Int J Pediatr Otorhinolaryngol 2013; 77(7):1118-1122. https://doi.org/10.1016/j.ijporl.2013.04.013
Ebraheim NA, Yang H, Lu J, Biyani A, Yeasting RA. Anterior iliac crest bone graft. Anatomic considerations. Spine 1997; 22(8):847-849. https://doi.org/10.1097/00007632-199704150-00003
Burk T, Del Valle J, Finn RA, Phillips C. Maximum quantity of bone available for harvest from the anterior iliac crest, posterior iliac crest, and proximal tibia using a standardized surgical approach: A cadaveric study. J Oral Maxillofac Surg 2016; 74(12):2532-2548. https://doi.org/10.1016/j.joms.2016.06.191
Yates DM, Brockhoff HC, 2nd, Finn R, Phillips C. Comparison of intraoral harvest sites for corticocancellous bone grafts. J Oral Maxillofac Surg 2013; 71(3):497-504. https://doi.org/10.1016/j.joms.2012.10.014
Park HD, Min CK, Kwak HH, Youn KH, Choi SH, Kim HJ. Topography of the outer mandibular symphyseal region with reference to the autogenous bone graft. Int J Oral Maxillofac Surg 2004; 33(8):781-785. https://doi.org/10.1016/j.ijom.2004.02.006
Lee JE, Lee YJ, Jin SH, Kim Y, Kook YA, Ko Y, et al. Topographic analysis of the mandibular symphysis in a normal occlusion population using cone-beam computed tomography. Exp Ther Med 2015; 10(6):2150-2156. https://doi.org/10.3892/etm.2015.2842
Emami E, Heydecke G, Rompré PH, de Grandmont P, Feine JS. Impact of implant support for mandibular dentures on satisfaction, oral and general health-related quality of life: A meta-analysis of randomized-controlled trials. Clin Oral Implants Res 2009; 20(6):533-544. https://doi.org/10.1111/j.1600-0501.2008.01693.x
Gonçalves GSY, de Magalhães KMF, Rocha EP, Dos Santos PH, Assunção WG. Oral health-related quality of life and satisfaction in edentulous patients rehabilitated with implant-supported full dentures all-on-four concept: A systematic review. Clin Oral Investig 2022; 26(1):83-94. https://doi.org/10.1007/s00784-021-04213-y
Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone grafts and substitutes in dentistry: A review of current trends and developments. Molecules 2021; 26(10):3007. https://doi.org/10.3390/molecules26103007
Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A. Autogenous bone grafts in oral implantology-is it still a "gold standard"? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent 2017; 3(1):23. https://doi.org/10.1186/s40729-017-0084-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Pesquisa Brasileira em Odontopediatria e Clínica Integrada
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.