Spectrophotometric Analysis of Streptococcus mutans Growth and Biofilm Formation in Saliva and Histatin-5 Relate to pH and Viscosity
Keywords:
Saliva, Histatins, Viridans Streptococci, Biofilms, Hydrogen-Ion ConcentrationAbstract
Objective: To analyze the ability of saliva in controlling the growth and the biofilm formation of Streptococcus mutans (S. mutans) as well as the effect of histatin-5 anti-biofilm relate to pH and saliva viscosity. Material and Methods: The S. mutans biofilm assayed by crystal violet 1% and its growth measured by spectrophotometer. The saliva viscosity was analyzed by viscometer, and pH of saliva was measured by pH meter. Results: Based on the optical density values, growth of S. mutans in saliva ranged <300 CFU/mL (0.1 nm) at concentrations of 25%, 12.5% and 6.25% for 24 hours. Whereas at the 48 h and 72 h period of incubation shown an increase in growth of S. mutans ranged 300-600 CFU/mL (0.2-0.36 nm). The inhibitory biofilm formation of S. mutans in saliva was significantly higher at concentrations of 12.5% and 6.25% at 24 h incubation times on a moderate scale, whereas the histatin-5 was effective to inhibit S. mutans biofilm on the 50 and 25 ppm. The saliva possessed a higher inhibitory of biofilm S. mutans than histatin-5 and good level viscosity (0.91-0.92 cP). Conclusion: The saliva was able to control the growth of S. mutans, and histatin-5 can inhibit the biofilm formation S. mutans. Furthermore, the saliva was also able to respond to the pH change with good viscosity of saliva.
References
Elguezabal N, Maza JL, Dorronsoro S, Pontón J. Whole saliva has a dual role on the adherence of Candida albicans to polymethylmetacrylate. Open Dent J 2008; 2:1-4. https://doi.org/10.2174/1874210600802010001
Malathi N, Mythili S, Vasanthi HR. Salivary diagnostics: a brief review. ISRN Dent 2014; 2014:158786. https://doi.org/10.1155/2014/158786
Mandel ID. The functions of saliva. J Dent Res 1987; 66(Spec No):623-7. https://doi.org/10.1177/00220345870660S203
Pedersen AML, Belstrøm D. The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent 2019; 80(Suppl 1):S3-S12. https://doi.org/10.1016/j.jdent.2018.08.010
Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis 2014; 33(4):499-515. https://doi.org/10.1007/s10096-013-1993-7
Pannu P, Gambhir R, Sujlana A. Correlation between the salivary Streptococcus mutans levels and dental caries experience in adult population of Chandigarh, India. Eur J Dent 2013; 7(2):191-5. https://doi.org/10.4103/1305-7456.110169
Ahn SJ, Ahn SJ, Wen ZT, Brady LJ, Burne RA. Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infect Immun 2008; 76(9):4259-68. https://doi.org/10.1128/IAI.00422-08
Scannapieco FA. Saliva-bacterium interactions in oral microbial ecology. Crit Rev Oral Biol Med 1994; 5(3-4):203-48. https://doi.org/10.1177/10454411940050030201
Levine M. Susceptibility to dental caries and the salivary proline-rich proteins. Int J Dent 2011; 2011:953412. https://doi.org/10.1155/2011/953412
Zhan L. Rebalancing the caries microbiome dysbiosis: targeted treatment and sugar alcohols. Adv Dent Res 2018; 29(1):110-116. https://doi.org/10.1177/0022034517736498
Du H, Puri S, McCall A, Norris HL, Russo T, Edgerton M. Human salivary protein Histatin 5 has potent bactericidal activity against ESKAPE pathogens. Front Cell Infect Microbiol 2017; 7:41. https://doi.org/10.3389/fcimb.2017.00041
Gani BA, Soraya C, Sunnati S, Nasution AI, Zikri N, Rahadianur R. The pH changes of artificial saliva after interaction with oral of artificial saliva after interaction with oral micropathogen. Dent J 2012; 45(4):234-8. https://doi.org/10.20473/j.djmkg.v45.i4.p234-238
Animireddy D, Reddy Bekkem VTR, Vallala P, Kotha SB, Ankireddy S, Mohammad N. Evaluation of pH, buffering capacity, viscosity and flow rate levels of saliva in caries-free, minimal caries and nursing caries children: An in vivo study. Contemp Clin Dent 2014; 5(3):324-8. https://doi.org/10.4103/0976-237x.137931
Sutton S. Measurement of microbial cells by optical density. J Valid Technol 2011; 17(1):46-9.
Gani BA, Batchiar EW, Bachtiar BM. The role of cigarettes smoke condensate in enhanced Candida albicans virulence of salivary isolates based on time and temperature. J Int Dent Med Res 2017; 10(Special issue):769-77.
Georgios A, Vassiliki T, Sotirios K. Acidogenicity and acidurance of dental plaque and saliva sediment from adults in relation to caries activity and chlorhexidine exposure. J Oral Microbiol 2015; 7:26197. https://doi.org/10.3402/jom.v7.26197
Simón-Soro A, Mira A. Solving the etiology of dental caries. Trends Microbiol 2015; 23(2):76-82. https://doi.org/10.1016/j.tim.2014.10.010
El Sherbiny GM. Control of growth Streptococcus mutans isolated from saliva and dental caries. Int J Curr Microbiol App Sci 2014; 3(10):1-10.
Lemos JA, Burne RA. A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology 2008; 154(Pt 11):3247-55. https://doi.org/10.1099/mic.0.2008/023770-0
Ito T, Maeda T, Senpuku H. Roles of salivary components in Streptococcus mutans colonization in a new animal model using NOD/SCID.e2f1−/− mice. PloS One 2012; 7(2):e32063. https://doi.org/10.1371/journal.pone.0032063
Ajdić D, McShan WM, McLaughlin RE, Savić G, Chang J, Carson MB, et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 2002; 99(22):14434-9. https://doi.org/10.1073/pnas.172501299
Bowen W, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 2011; 45(1):69-86. https://doi.org/10.1159/000324598
Matsumoto-Nakano M. Role of Streptococcus mutans surface proteins for biofilm formation. Jpn Dent Sci Rev 2018; 54(1):22-29. https://doi.org/10.1016/j.jdsr.2017.08.002
Ren Z, Chen L, Li J, Li Y. Inhibition of Streptococcus mutans polysaccharide synthesis by molecules targeting glycosyltransferase activity. J Oral Microbiol 2016; 8(1):31095. https://doi.org/10.3402/jom.v8.31095
Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates 3rd JR, et al. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog 2012; 8(4):e1002623. https://doi.org/10.1371/journal.ppat.1002623
Lamberts BL, Pederson ED, Shklair I. Salivary pH-rise activities in caries-free and caries-active naval recruits. Arch Oral Biol 1983; 28(7):605-8. https://doi.org/10.1016/0003-9969(83)90008-0
Jurczak A, Kościelniak D, Papież M, Vyhouskaya P, Krzyściak W. A study on β-defensin-2 and histatin-5 as a diagnostic marker of early childhood caries progression. Biol Res 2015; 48(1):61. https://doi.org/10.1186/s40659-015-0050-7
Krzyściak W, Jurczak A, Piątkowski J, Kościelniak D, Gregorczyk-Maga I, Kołodziej I, et al. Effect of histatin-5 and lysozyme on the ability of Streptococcus mutans to form biofilms in in vitro conditions. Postepy Hig Med Dosw 2015; 69:1056-66.
Helmerhorst EJ, Hodgson R, van't Hof W, Veerman EC, Allison C, Nieuw Amerongen AV. The effects of histatin-derived basic antimicrobial peptides on oral biofilms. J Dent Res 1999; 78(6):1245-50. https://doi.org/10.1177/00220345990780060801
Curvelo JAR, Moraes DC, Anjos CA, Portela MB, Soares RMA. Histatin 5 and human lactoferrin inhibit biofilm formation of a fluconazole resistant Candida albicans clinical isolate. An Acad Bras Cienc 2019; 91(1):e20180045. https://doi.org/10.1590/0001-3765201920180045
Abraham P, Sundaram A, Asha R, Reshmy V, George S, Kumar KS. Structure-activity relationship and mode of action of a frog secreted antibacterial peptide B1CTcu5 using synthetically and modularly modified or deleted (SMMD) peptides. PloS One 2015; 10(5):e0124210. https://doi.org/10.1371/journal.pone.0124210
Xiang SW, Shao J, He J, Wu XY, Xu XH, Zhao WH. A membrane-targeted peptide inhibiting PtxA of phosphotransferase system blocks Streptococcus mutans. Caries Res 2019; 53(2):176-93. https://doi.org/10.1159/000489607
Mihajlovic M, Lazaridis T. Antimicrobial peptides in toroidal and cylindrical pores. Biochim Biophys Acta 2010; 1798(8):1485-93. https://doi.org/10.1016/j.bbamem.2010.04.004
Ligtenberg A, Liem EHS, Brand HS, Veerman ECI. The effect of exercise on salivary viscosity. Diagnostics 2016; 6(4):40. https://doi.org/10.3390/diagnostics6040040
Llena-Puy C. The rôle of saliva in maintaining oral health and as an aid to diagnosis. Med Oral Patol Oral Cir Bucal 2006; 11(5):E449-55.
Radhi NJMH, Yas BA. Salivary viscosity in relation to oral health status among a group of 20-22 years old dental students. Iraqi J Comm Med 2013; 26(3):219-24.
Govindaraj S, Daniel MJ, Vasudevan SS, Kumaran JV. Changes in salivary flow rate, pH, and viscosity among working men and women. Dent Med Res 2019; 7(2):56-59. https://doi.org/10.4103/dmr.dmr_20_19
Łysik D, Mystkowska J, Markiewicz G, Deptuła P, Bucki R. The Influence of mucin-based artificial saliva on properties of polycaprolactone and polylactide. Polymers 2019; 11(11):1880. https://doi.org/10.3390/polym11111880
Li YH, Hanna MN, Svensäter G, Ellen RP, Cvitkovitch DG. Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 2001; 183(23):6875-84. https://doi.org/10.1128/JB.183.23.6875-6884.2001
Welin-Neilands J, Svensäter G. Acid tolerance of biofilm cells of Streptococcus mutans. Appl Environ Microbiol 2007; 73(17):5633-8. https://doi.org/10.1128/AEM.01049-07
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Pesquisa Brasileira em Odontopediatria e Clínica Integrada
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.