Initial Mechanical Stabilization of Conventional Glass Ionomer Cements with Different Active Principles

Authors

  • Caroline Santos Ribeiro
  • Mayra Manoella Perez
  • Pablo Lenin Benitez-Sellan
  • Renata de Oliveira Guaré
  • Eduardo Bresciani
  • Michele Baffi Diniz

Keywords:

Dental Cements, Glass Ionomer Cements, Hardness Tests, Zinc

Abstract

Objective: To determine the initial mechanical stabilization of conventional glass ionomer cements (GICs) indicated for the atraumatic restorative treatment (ART) in different storage periods. Material and Methods: Specimens were divided according to the GIC (n=12): IZ - Ion-Z, KM - Ketac Molar Easymix, RS - Riva Self Cure, and GL - Gold Label 9. They were prepared and stored in distilled water. Superficial microhardness (SMH) was evaluated (KHN) in three phases: (A) after 1, (B) 3, and (C) 7 days of storage. Data were submitted to 2-way ANOVA and Tukey tests (α = 5%). Results: The average KHN values for phases A, B, and C were, respectively, 33.05 ± 9.74; 33.21 ± 10.31 and 52.07 ± 11.75 (IZ); 50.35 ± 11.39; 66.05 ± 10.48 and 67.77 ± 13.80 (KM); 89.63 ± 15.59; 71.31 ± 23.86 and 57.70 ± 16.89 (RS); 42.18 ± 9.03; 68.54 ± 6.83 and 57.95 ± 8.24 (GL). Significant differences were observed: GIC, time, and interaction of both (p<0.05). KHN values differed between the groups, except in the GIC parameter for KM and GL. The time parameter values of phase A were lower than those of B and C, except for IZ and RS. Conclusion: The initial mechanical stabilization differed between the types of GIC tested and the storage time, and after the final period, all had similar SMH.

References

Frencken JE, Pilot T, Songpaisan Y, Phantumvanit P. Atraumatic restorative treatment (ART): rationale, technique, and development. J Public Health Dent 1996; 56(3 Spec No):135-40. https://doi.org/10.1111/j.1752-7325.1996.tb02423.x

Holmgren CJ, Roux D, Doméjean S. Minimal intervention dentistry: part 5. Atraumatic restorative treatment (ART) - a minimum intervention and minimally invasive approach for the management of dental caries. Br Dent J 2013; 214(1):11-8. https://doi.org/10.1038/sj.bdj.2012.1175

Yip HK, Smales RJ, Ngo HC, Tay FR, Chu FC. Selection of restorative materials for the atraumatic restorative treatment (ART) approach: a review. Spec Care Dentist 2001; 21(6):216-21. https://doi.org/10.1111/j.1754-4505.2001.tb00257.x

Frencken JE, Makoni F, Sithole WD. ART restorations and glass ionomer sealants in Zimbabwe: survival after 3 years. Community Dent Oral Epidemiol 1998; 26(6):372-81. https://doi.org/10.1111/j.1600-0528.1998.tb01975.x

Frencken JE, Leal SC. The correct use of the ART Approach. J Appl Oral Sci 2010; 18(1):1-4. https://doi.org/10.1590/s1678-77572010000100002

Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties microstructures glass-ionomer cements. Dent Mater 2000; 16(2):129-38. https://doi.org/10.1016/s0109-5641(99)00093-7

Mount GJ. Clinical performance of glass-ionomers. Biomaterials 1998; 19(6):573-9. https://doi.org/10.1016/s0142-9612(97)00139-7

Bresciani E. Clinical trials with Atraumatic Restorative Treatment (ART) in deciduous and permanent teeth. J Appl Oral Sci 2006; 14(Special Issue):14-9. https://doi.org/10.1590/S1678-77572006000700004

Dowling AH, Stamboulis A, Fleming GJ. The influence of montmorillonite clay reinforcement on the performance of a glass ionomer restorative. J Dent 2006; 34(10):802-10. https://doi.org/10.1016/j.jdent.2006.03.005

Kleverlaan CJ, van Diunen RN, Feilzer AJ. Mechanical properties of glass ionomer cements affected by curing methods. Dent Mater 2004; 20(1):45-50. https://doi.org/10.1016/s0109-5641(03)00067-8

Moheet IA, Luddin N, Rahman IA, Kannan TP, Nik Abd Ghani NR, Masudi SM. Modifications of glass ionomer cement powder by addition of recently fabricated nano-fillers and their effect on the properties: a review. Eur J Dent 2019; 13(3):470-7. https://doi.org/10.1055/s-0039-1693524

Gu YW, Yap AU, Cheang P, Khor KA. Effects of incorporation of HA/ZrO(2) into glass ionomer cement (GIC). Biomaterials 2005; 26(7):713-20. https://doi.org/10.1016/j.biomaterials.2004.03.019

Akasaka T, Watari F, Sato Y, Tohji K. Apatite formation on carbon nanotubes. Mater Sci Eng C 2006; 26(4):675-8. https://doi.org/10.1016/j.msec.2005.03.009

Santos MMPR, Mathias IF, Diniz MB, Bresciani E. Evaluation of surface hardness of glass ionomer reinforced cements by carbon nanotubes. Rev Odontol UNESP 2015; 44(2):108-12. https://doi.org/10.1590/1807-2577.1060

Elsaka SE, Hamouda IM, Swain MV. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: influence oh physical and antibacterial properties. J Dent 2011; 39(9):589-98. https://doi.org/10.1016/j.jdent.2011.05.006

Al Zraikat H, Palamara JE, Messer HH, Burrow MF, Reynolds EC. The incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass ionomer cement. Dent Mater 2011; 27(3):235-43. https://doi.org/10.1016/j.dental.2010.10.008

Yap AU, Pek YS, Kumar RA, Cheang P, Khor KA. Experimental studies on a new bioactive material: HAIonomer cements. Biomaterials 2002; 23(3):955-62. https://doi.org/10.1016/s0142-9612(01)00208-3

de Oliveira BMB, Agostini IE, Baesso ML, Menezes-Silva R, Borges AFS, Navarro MFL, et al. Influence of external energy sources on the dynamic setting process of glass-ionomer cements. Dent Mater 2019; 35(3):450-6. https://doi.org/10.1016/j.dental.2019.01.003

Agarwal P, Nayak R, Upadhya N, Ginjupalli K, Gupta L. Evaluation of properties of glass ionomer cements reinforced with zinc oxide nanoparticles – an in vitro study. Mater Today: Proceed 2018; 5(8):16065-72. https://doi.org/10.1016/j.matpr.2018.05.088

Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, et al. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 2008; 24(8):4140-4. https://doi.org/10.1021/la7035949

Kasraei S, Sami L, Hendi S, Alikhani MY, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod 2014; 39(2):109-14. https://doi.org/10.5395/rde.2014.39.2.109

Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles. Trends Biotechnol 2012; 30(10):499-511. https://doi.org/10.1016/j.tibtech.2012.06.004

Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 2009; 107(4):1193-1201. https://doi.org/10.1111/j.1365-2672.2009.04303.x

Melo MA, Guedes SF, Xu HH, Rodrigues LK. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol 2013; 31(8):459-67. https://doi.org/10.1016/j.tibtech.2013.05.010

Boyd D, Towler MR. The processing, mechanical properties and bioactivity of zinc based glass ionomer cements. J Mater Sci Mater Med 2005; 16(9):843-50. https://doi.org/10.1007/s10856-005-3578-1

Brauer DS, Gentleman E, Farrar DF, Stevens MM, Hill RG. Benefits and drawbacks of zinc in glass ionomer bone cements. Biomed Mater 2011; 6(4):045007. https://doi.org/10.1088/1748-6041/6/4/04500

Kim DA, Abo-Mosallam HA, Lee HY, Kim GR, Kim HW, Lee HH. Development of a novel aluminum-free glass ionomer cement based on magnesium/strontium-silicate glasses. Mater Sci Eng C Mater Biol Appl 2014; 42:665-71. https://doi.org/10.1016/j.msec.2014.06.006

Tavassoli Hojati S, Alaghemand H, Hamze F, Ahmadian Babaki F, Rajab-Nia R, Rezvani MB, et al. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater 2013; 29(5):495-505. https://doi.org/10.1016/j.dental.2013.03.011

Spencer CG, Campbell PM, Buschang PH, Cai J, Honeyman AL. Antimicrobial effects of zinc oxide in an orthodontic bonding agent. Angle Orthod 2009; 79(2):317-22. https://doi.org/10.2319/011408-19.1

Garcia PPNS, Cardia MFB, Francisconi RS, Dovigo LN, Spolidório DMP, de Souza Rastelli AN, et al. Antibacterial activity of glass ionomer cement modified by zinc oxide nanoparticles. Micros Res Tech 2017; 80(5):456-61. https://doi.org/10.1002/jemt.22814

Panahandeh N, Torabzadeh H, Aghaee M, Hasani E, Safa S. Effect of incorporation of zinc oxide nanoparticles on mechanical properties of conventional glass ionomer. J Conserv Dent 2018; 21(2):130-5. https://doi.org/10.4103/JCD.JCD_170_17

Souza EBM, Santos DMS, Magalhães AC. Antimicrobial and anti-caries effect of new glass ionomer cement on enamel under microcosm biofilm model. Braz Dent J 2018; 29(6):599-605. https://doi.org/10.1590/0103-6440201802163

Machado KDS, Reges RV, Botelho TL, Santos FG. Efeito da manipulação e proporção pó e líquido do cimento de ionômero de vidro reforçado com zinco na rugosidade superficial (Parte 1). Rev Cienc Odontol 2019; 3(1):20-4.

Bansal R, Burgess J, Lawson NC. Wear of an enhanced resin-modified glass-ionomer restorative material. Am J Dent 2016; 29(3):171-4.

Shiozawa M, Takahashi H, Iwasaki N. Fluoride release and mechanical properties after 1-year water storage of recent restorative glass ionomer cements. Clin Oral Invest 2014; 18(4):1053-60. https://doi.org/10.1007/s00784-013-1074-4.

Bonifácio CC, Kleverlaan CJ, Raggio DP, Werner A, Carvalho RCR, van Amerongen WE. Physical-mechanical properties of glass ionomer cement indicated for atraumatic restorative treatment. Austr Dent J 2009; 54(3):233-7. https://doi.org/10.1111/j.1834-7819.2009.01125.x

Yap AU, Wee KE, Teoh SH. Effects of cyclic temperature changes on hardness of composite restoratives. Oper Dent 2002; 27(1):25-9

Yap AU, Wang X, Wu X, Chung SM. Comparative hardness and modulus of tooth-colored restoratives: a depth-sensing microindentation study. Biomaterials 2004; 25(11):2179-85. https://doi.org/10.1016/j.biomaterials.2003.09.003

Downloads

Published

2021-11-12

How to Cite

Ribeiro, C. S. ., Perez, M. M. ., Benitez-Sellan, P. L. ., Guaré, R. de O. ., Bresciani, E. ., & Diniz, M. B. . (2021). Initial Mechanical Stabilization of Conventional Glass Ionomer Cements with Different Active Principles. Pesquisa Brasileira Em Odontopediatria E Clínica Integrada, 21, e0096. Retrieved from https://revista.uepb.edu.br/PBOCI/article/view/660

Issue

Section

Original Articles