Type-2 Diabetes Mellitus Individuals Carry Different Periodontal Bacteria
Keywords:
Oral Health, Periodontal Diseases, Periodontitis, Diabetes Mellitus, Type 2Abstract
Objective: To identify etiologic microbiota associated periodontal diseases among diabetes patients and the factors related to the most commonly identified bacteria species. Material and Methods: Periodontal plaque samples from 11 diabetic participants and 13 non-diabetic controls were collected to assess their aerobic and anaerobic bacterial growth. Different distinct colonies were identified by microscopic and 16srDNA sequencing. Pearson's chi-square tests were conducted to examine any association between categorical variables. Results: The diabetic subjects revealed a more intense plaque formation with a mean plaque index of 2.4 compared to 1.8 in non-diabetics. A total of 86 bacteria were isolated from 24 plaque samples, 44 were aerobic, and 42 were anaerobic. Only aerobic isolates, 22 from diabetic patients and 22 from non-diabetic patients, were evaluated in these analyses. Bacillus spp. (B. cereus mainly) and Klebsiella spp. (K. pneumoniae, K. aerogenes, K. oxytoca) were detected markedly higher in non-diabetic individuals than in diabetic subjects (p=0.026 and p=0.021, respectively). Some bacteria were only identified in the dental plaque of diabetic individuals, namely, Bacillus mojavensis, Enterobacter cloacae, Proteus mirabilis, Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus pasteuri, Streptococcus mutans, and Streptococcus pasteurianus. The presence of acid reflux and jaundice were significantly associated with the most common bacterial isolate, namely Bacillus spp., with the p-values of 0.007 and 0.001, respectively. Conclusion: Type-2 diabetes mellitus is associated with a higher amount of dental plaques. Periodontal plaque samples from diabetic and non-diabetic subjects possess differential microbial communities. Diabetic plaques contain more versatile microbes predominated by gram-positive streptococci and staphylococci.
References
Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J 2012; 6(6):1176-85. https://doi.org/10.1038/ismej.2011.191
Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol 2010; 192(19):5002-17. https://doi.org/10.1128/JB.00542-10
Arweiler NB, Netuschil L. The Oral Microbiota. Adv Exp Med Biol 2016; 902:45-60. https://doi.org/10.1007/978-3-319-31248-4_4
Dabdoub SM, Ganesan SM, Kumar PS. Comparative metagenomics reveals taxonomically idiosyncratic yet functionally congruent communities in periodontitis. Sci Rep 2016; 6:38993. https://doi.org/10.1038/srep38993
Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 2018; 16(12):745-59. https://doi.org/10.1038/s41579-018-0089-x
Zbinden A, Bostanci N, Belibasakis GN. The novel species Streptococcus tigurinus and its association with oral infection. Virulence 2015; 6(3):177-82. https://doi.org/10.4161/21505594.2014.970472
Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 2011; 10(5):497-506. https://doi.org/10.1016/j.chom.2011.10.006
Darveau RP, Hajishengallis G, Curtis MA. Porphyromonas gingivalis as a potential community activist for disease. J Dent Res 2012; 91(9):816-20. https://doi.org/10.1177/0022034512453589
Beaglehole R. Sugar-sweetened beverages, obesity, diabetes, and oral health: a preventable crisis. Pacific Health Dialog 2014; 20(1):39-42.
Jin LJ, Lamster IB, Greenspan JS, Pitts NB, Scully C, Warnakulasuriya S. Global burden of oral diseases: emerging concepts, management, and interplay with systemic health. Oral Dis 2016; 22(7):609-19. https://doi.org/10.1111/odi.12428
Jacob JA. Study links periodontal disease bacteria to pancreatic cancer risk. JAMA 2016; 315(24):2653-4. https://doi.org/10.1001/jama.2016.6295
Casarin RC, Barbagallo A, Meulman T, Santos VR, Sallum EA, Nociti FH, et al. Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis. J Periodontal Res 2013; 48(1):30-6. https://doi.org/10.1111/j.1600-0765.2012.01498.x
Nguyen CM, Kim JW, Quan VH, Nguyen BH, Tran SD. Periodontal associations in cardiovascular diseases: The latest evidence and understanding. J Oral Biol Craniofac Res 2015; 5(3):203-6. https://doi.org/10.1016/j.jobcr.2015.06.008
Hendler A, Mulli TK, Hughes FJ, Perrett D, Bombardieri M, Houri-Haddad Y, et al. Involvement of autoimmunity in the pathogenesis of aggressive periodontitis. J Dent Res 2010; 89(12):1389-94. https://doi.org/10.1177/0022034510381903
Linden GJ, Lyons A, Scannapieco FA. Periodontal systemic associations: a review of the evidence. J Clin Periodontol 2013; 40(Suppl 14): S8-S19. https://doi.org/10.1111/jcpe.12064
Poole S, Singhrao SK, Kesavalu L, Curtis MA, Crean S. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer's disease brain tissue. J Alzheimers Dis 2013; 36(4):665-77. https://doi.org/10.3233/JAD-121918
Kumar PS. From focal sepsis to periodontal medicine: A century of exploring the role of the oral microbiome in systemic disease. J Physiol 2016; 595(2):465-76. https://doi.org/10.1113/JP272427
Kocher T, Konig J, Borgnakke WS, Pink C, Meisel P. Periodontal complications of hyperglycemia/diabetes mellitus: Epidemiologic complexity and clinical challenge. Periodontol 2000 2018; 78(1):59-97. https://doi.org/10.1111/prd.12235
Mealey BL, Ocampo GL. Diabetes mellitus and periodontal disease. Periodontol 2000 2007; 44(1):127-53. https://doi.org/10.1111/j.1600-0757.2006.00193.x
Chavarry NG, Vettore MV, Sansone C, Sheiham A. The relationship between diabetes mellitus and destructive periodontal disease: a meta-analysis. Oral Health Prev Dent 2009; 7(2):107-27.
Khader YS, Dauod AS, El-Qaderi SS, Alkafajei A, Batayha WQ. Periodontal status of diabetics compared with nondiabetics: a meta-analysis. J Diabetes Complications 2006; 20(1):59-68. https://doi.org/10.1016/j.jdiacomp.2005.05.006
Akhter R, Hassan NM, Aida J, Zaman KU, Morita M. Risk indicators for tooth loss due to caries and periodontal disease in recipients of free dental treatment in an adult population in Bangladesh. Oral Health Prev Dent 2008; 6(3):199-207.
Arvidson-Bufano UB, Holm AK. Dental health in urban and rural areas of central and western Bangladesh. Odontostomatol Trop 1990; 13(3):81-6.
Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S, et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PloS one 2015; 10(2):e0117617. https://doi.org/10.1371/journal.pone.0117617
Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity 2017; 46(4):562-76. https://doi.org/10.1016/j.immuni.2017.04.008
Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 2004; 4(6):478-85. https://doi.org/10.1038/nri1373
Alvarez-Mercado AI, Navarro-Oliveros M, Robles-Sanchez C, Plaza-Diaz J, Saez-Lara MJ, Munoz-Quezada S, et al. Microbial population changes and their relationship with human health and disease. Microorganisms 2019; 7(3):68. https://doi.org/10.3390/microorganisms7030068
Preshaw PM, Alba AL, Herrera D, Jepsen S, Konstantinidis A, Makrilakis K, et al. Periodontitis and diabetes: a two-way relationship. Diabetologia 2012; 55(1):21-31. https://doi.org/10.1007/s00125-011-2342-y
Schuch R, Pelzek AJ, Fazzini MM, Nelson DC, Fischetti VA. Complete genome sequence of Bacillus cereus Sensu Lato Bacteriophage Bcp1. Genome Announc 2014; 2(3):e00334-14. https://doi.org/10.1128/genomeA.00334-14
Helgason E, Caugant DA, Olsen I, Kolsto AB. Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. J Clin Microbiol 2000; 38(4):1615-22. https://doi.org/10.1128/JCM.38.4.1615-1622.2000
Tewari A, Abdullah S. Bacillus cereus food poisoning: international and Indian perspective. J Food Sci Technol 2015; 52(5):2500-11. https://doi.org/10.1007/s13197-014-1344-4
Ikeda M, Mizoguchi M, Oshida Y, Tatsuno K, Saito R, Okazaki M, et al. Clinical and microbiological characteristics and occurrence of Klebsiella pneumoniae infection in Japan. Int J Gen Med 2018; 11:293-9. https://doi.org/10.2147/IJGM.S166940
Scannapieco FA, Mylotte JM. Relationships between periodontal disease and bacterial pneumonia. J Periodontol 1996; 67(10 Suppl):1114-22. https://doi.org/10.1902/jop.1996.67.10s.1114
Goldberg S, Cardash H, Browning H 3rd, Sahly H, Rosenberg M. Isolation of Enterobacteriaceae from the mouth and potential association with malodor. J Dent Res 1997; 76(11):1770-5. https://doi.org/10.1177/00220345970760110801
Souto R, Andrade AFB, Uzeda M, Colombo APV. Prevalence of "non-oral" pathogenic bacteria in subgingival biofilm of subjects with chronic periodontitis. Braz J Microbiol 2006; 37(3):208-15. https://doi.org/10.1590/S1517-83822006000300002
Bui FQ, Almeida-da-Silva CLC, Huynh B, Trinh A, Liu J, Woodward J, et al. Association between periodontal pathogens and systemic disease. Biomed J 2019; 42(1):27-35. https://doi.org/10.1016/j.bj.2018.12.001
Correa JD, Fernandes GR, Calderaro DC, Mendonca SMS, Silva JM, Albiero ML, et al. Oral microbial dysbiosis linked to worsened periodontal condition in rheumatoid arthritis patients. Sci Rep 2019; 9(1):8379. https://doi.org/10.1038/s41598-019-44674-6
Wu YY, Xiao E, Graves DT. Diabetes mellitus related bone metabolism and periodontal disease. Int J Oral Sci 2015; 7(2):63-72. https://doi.org/10.1038/ijos.2015.2
Roberts FA, Darveau RP. Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontol 2000 2015; 69(1):18-27. https://doi.org/10.1111/prd.12087
Rocha CL, Fischetti VA. Identification and characterization of a novel fibronectin-binding protein on the surface of group A streptococci. Infect Immun 1999; 67(6):2720-8. https://doi.org/10.1128/IAI.67.6.2720-2728.1999
Rudiger SG, Carlen A, Meurman JH, Kari K, Olsson J. Dental biofilms at healthy and inflamed gingival margins. J Clin Periodontol 2002; 29(6):524-30. https://doi.org/10.1034/j.1600-051x.2002.290609.x
Foster TJ. The remarkably multifunctional fibronectin-binding proteins of Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 2016; 35(12):1923-31. https://doi.org/10.1007/s10096-016-2763-0
Monteiro MF, Casati MZ, Taiete T, Vale HF, Nociti FH Jr, Sallum EA, et al. Periodontal clinical and microbiological characteristics in healthy versus generalized aggressive periodontitis families. J Clin Periodontol 2015; 42(10):914-21. https://doi.org/10.1111/jcpe.12459
Rocha DM, Santeusanio F, Faloona GR, Unger RH. Abnormal pancreatic alpha-cell function in bacterial infections. N Engl J Med 1973; 288(14):700-3. https://doi.org/10.1056/NEJM197304052881402
Schmidt E. Benefits of taking Bacillus species probiotics. Meridian Health Clinic. 2015. Available from: https://meridianhealthclinic.com/benefits-of-taking-a-probiotic-especially-bacillus-species/. [Accessed on April 10, 2020].
Jacobs JE. Can GERD cause tooth decay? Everyday Health. 2007. Available from: https://www.everydayhealth.com/dental-health/oral-conditions/specialist/jacobs/can-gerd-cause-tooth-decay.aspx. [Accessed on April 10, 2020].
Chandrasekhar J, Varghese TP, Gopi A, Raj M, Sudevan R, Jayakumar H. Treatment effect of probiotic Bacillus Clausii on neonatal jaundice in late preterm and term newborn babies: an experimental study. Pediatr Ther 2017; 7(3):326-31. https://doi.org/10.4172/2161-0665.1000326
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Pesquisa Brasileira em Odontopediatria e Clínica Integrada
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.