Antimicrobial Activity of Colloidal Selenium Nanoparticles in Chitosan Solution against Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans

Authors

  • Majid Darroudi
  • Abdolrasoul Rangrazi
  • Kiarash Ghazvini
  • Hossein Bagheri
  • Alireza Boruziniat

Keywords:

Selenium, Chitosan, Streptococcus mutans, Lactobacillus acidophilus, Candida albicans

Abstract

Objective: To investigate the antimicrobial activity of colloidal selenium nanoparticles in chitosan solution (Cts-Se-NPs) against Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Material and Methods: Cts-Se-NPs solution was prepared using a simple chemical reduction method. The MIC and MBC against S. mutans, L. acidophilus, and C. albicans were determined using the broth dilution assay. Results: The Cts-Se-NPs had remarkable antimicrobial activity against S. mutans, L. acidophilus, and C. albicans. The MIC values of the Cts-Se-NPs were lowest for S. mutans (0.068 mg/ml) compared to L. acidophilus (0.137 mg/ml), and C. albicans (0.274 mg/ml). The MBC values of the Cts-Se-NPs against the microorganisms after one, two, six, and 24 hours indicated that the concentration of 0.274 mg/ml of Cts-Se-NPs completely killed S. mutans, L. acidophilus, and C. albicans after one, two, and six hours, respectively. At the concentration of 0.137 mg/ml, S. mutans and L. acidophilus were killed after six and 24 hours, respectively. Conclusion: These findings encourage the potential use of Cts-Se-NPs in dentistry, while further clinical research is required in this area.

References

Rathee M, Sapra A. Dental Caries. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020.

Elgamily H, Safy R, Makharita R. Influence of medicinal plant extracts on the growth of oral pathogens Streptococcus mutans and Lactobacillus acidophilus: an in-vitro study. Open Access Maced J Med Sci 2019; 7(14):2328-34. https://doi.org/10.3889/oamjms.2019.653

Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, et al. The biology of Streptococcus mutans. Microbiol Spectr 2019; 7(1):10.1128/microbiolspec.GPP3-0051-2018. https://doi.org/10.1128/microbiolspec.GPP3-0051-2018

Cui T, Luo W, Xu L, Yang B, Zhao W, Cang H. Progress of antimicrobial discovery against the major cariogenic pathogen Streptococcus mutans. Curr Issues Mol Biol 2019; 32:601-44. https://doi.org/10.21775/cimb.032.601

Granath L, Cleaton-Jones P, Fatti LP, Grossman ES. Salivary lactobacilli explain dental caries better than salivary mutans streptococci in 4-5-year-old children. Scand J Dent Res 1994; 102(6):319-23. https://doi.org/10.1111/j.1600-0722.1994.tb01477.x.

Zickert I, Emilson CG, Krasse B. Streptococcus mutans, lactobacilli and dental health in 13-14-year-old Swedish children. Community Dent Oral Epidemiol 1982; 10(2):77-81. https://doi.org/10.1111/j.1600-0528.1982.tb00367.x

Köhler B, Bjarnason S. Mutans streptococci, lactobacilli and caries prevalence in 11-and 12-year-old Icelandic children. Community Dent Oral Epidemiol 1987; 15(6):332-5. https://doi.org/10.1111/j.1600-0528.1987.tb01747.x

Ozogul F, Hamed I. Lactic acid bacteria: Lactobacillus spp.: Lactobacillus acidophilus. Reference Module in Food Science 2016. https://doi.org/10.1016/b978-0-08-100596-5.00852-0

Kumar R, Breindel C, Saraswat D, Cullen PJ, Edgerton M. Candida albicans Sap6 amyloid regions function in cellular aggregation and zinc binding, and contribute to zinc acquisition. Sci Rep 2017; 7(1):1-15. https://doi.org/10.1038/s41598-017-03082-4

Gacon I, Loster JE, Wieczorek A. Relationship between oral hygiene and fungal growth in patients: users of an acrylic denture without signs of inflammatory process. Clin Interv Aging 2019; 14:1297-1302. https://doi.org/10.2147/CIA.S193685

Koo H, Andes DR, Krysan DJ. Candida-streptococcal interactions in biofilm-associated oral diseases. PLoS Pathog 2018; 14(12):e1007342. https://doi.org/10.1371/journal.ppat.1007342

Noori AJ, Kareem FA. The effect of magnesium oxide nanoparticles on the antibacterial and antibiofilm properties of glass-ionomer cement. Heliyon 2019; 5(10):e02568. https://doi.org/10.1016/j.heliyon.2019.e02568

Carrouel F, Viennot S, Ottolenghi L, Gaillard C, Bourgeois D. Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: a review of the current situation. Nanomaterials 2020; 10(1):140. https://doi.org/10.3390/nano10010140

Husain S, Al-Samadani KH, Najeeb S, Zafar MS, Khurshid Z, Zohaib S, et al. Chitosan biomaterials for current and potential dental applications. Materials 2017; 10(6):602. https://doi.org/10.3390/ma10060602

Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol 2014; 5(3):108-14.

Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. Bioactive glass applications in dentistry. Int J Mol Sci 2019; 20(23):5960. https://doi.org/10.3390/ijms20235960

Ma X, Lin X, Zhong T, Xie F. Evaluation of the efficacy of casein phosphopeptide-amorphous calcium phosphate on remineralization of white spot lesions in vitro and clinical research: a systematic review and meta-analysis. BMC Oral Health 2019; 19(1):295. https://doi.org/10.1186/s12903-019-0977-0

Heravi F, Bagheri H, Rangrazi A, Zebarjad SM. Effects of the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on mechanical properties of luting and lining glass ionomer cement. Mater Res Express 2016; 3(7):075405. https://doi.org/10.1088/2053-1591/3/7/075405

Heravi F, Bagheri H, Rangrazi A, Zebarjad SM. Incorporation of CPP-ACP into luting and lining GIC: Influence on wear rate (in the presence of artificial saliva) and compressive strength. ACS Biomater Sci Eng 2016; 2(11):1867-71. https://doi.org/10.1021/acsbiomaterials.6b00204

Heravi F, Bagheri H, Rangrazi A, Zebarjad SM. An in vitro study on the retentive strength of orthodontic bands cemented with CPP-ACP-containing GIC. Mater Res Express 2016; 3(12):125401. https://doi.org/10.1088/2053-1591/3/12/125401

Vahdati M, Moghadam TT. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci Rep 2020; 10(1):510. https://doi.org/10.1038/s41598-019-57333-7

Zhai X, Zhang C, Zhao G, Stoll S, Ren F, Leng X. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J Nanobiotechnology 2017; 15(1):4. https://doi.org/10.1186/s12951-016-0243-4

Islam MM, Shahruzzaman M, Biswas S, Sakib MN, Rashid TU. Chitosan based bioactive materials in tissue engineering applications - A review. Bioact Mater 2020; 5(1):164-83. https://doi.org/10.1016/j.bioactmat.2020.01.012

Rangrazi A, Bagheri H, Ghazvini K, Borouziniat A, Darroudi M. Synthesis and antibacterial activity of colloidal selenium nanoparticles in chitosan solution: a new antibacterial agent. Mater Res Express 2020; 6(12):1250h3. https://doi.org/10.1088/2053-1591/ab6a56

Brown D, Blowers R. Disc Methods of Sensitivity Testing and Other Semiquantitative Methods. In: Reeves DS, Phillips I, Williams JD, Wise R. Laboratory Methods in Antimicrobial Chemotherapy. Edinburgh: Livingstone; 1978.

Qaiyumi S. Macro-and Microdilution Methods of Antimicrobial Susceptibility Testing. Antimicrobial Susceptibility Testing Protocols. Boca Raton: Taylor & Francis; 2007. p. 75-79.

McFarland J. The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. JAMA 1907; 49(14):1176-8. https://doi.org/10.1001/jama.1907.25320140022001f

Tran PA, O’Brien-Simpson N, Reynolds EC, Pantarat N, Biswas DP, O’Connor AJ. Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli. Nanotechnology 2015; 27(4):045101. https://doi.org/10.1088/0957-4484/27/4/045101

Rajabnia R, Ghasempour M, Gharekhani S, Gholamhoseinnia S, Soroorhomayoon S. Anti-Streptococcus mutans property of a chitosan: Containing resin sealant. J Int Soc Prev Community Dent 2016; 6(1):49-53. https://doi.org/10.4103/2231-0762.175405

Costa E, Silva S, Tavaria F, Pintado M. Study of the effects of chitosan upon Streptococcus mutans adherence and biofilm formation. Anaerobe 2013; 20:27-31. https://doi.org/10.1016/j.anaerobe.2013.02.002

Saita K, Nagaoka S, Shirosaki T, Horikawa M, Ihara H. Dispersible chitosan particles showing bacteriostatic effect against Streptococcus mutans and their dental polishing effect. Biosci Biotechnol Biochem 2020; 84(6):1265-73. https://doi.org/10.1080/09168451.2020.1723402

Ikono R, Vibriani A, Wibowo I, Saputro KE, Muliawan W, Bachtiar BM, et al. Nanochitosan antimicrobial activity against Streptococcus mutans and Candida albicans dual-species biofilms. BMC Res Notes 2019; 12(1):383. https://doi.org/10.1186/s13104-019-4422-x

Shih P-Y, Liao Y-T, Tseng Y-K, Deng F-S, Lin C-H. A potential antifungal effect of chitosan against Candida albicans is mediated via the inhibition of SAGA complex component expression and the subsequent alteration of cell surface integrity. Front Microbiol 2019; 10:602. https://doi.org/10.3389/fmicb.2019.00602

Krasniqi S, Sejdini M, Stubljar D, Jukic T, Ihan A, Aliu K, et al. Antimicrobial effect of orthodontic materials on cariogenic bacteria Streptococcus mutans and Lactobacillus acidophilus. Med Sci Monit Basic Res 2020; 26:e920510. https://doi.org/10.12659/MSMBR.920510

Tran P, Hamood A, Mosley T, Gray T, Jarvis C, Webster D, et al. Organo-selenium-containing dental sealant inhibits bacterial biofilm. J Dent Res 2013; 92(5):461-6. https://doi.org/0.1177/0022034513482141

Guisbiers G, Lara HH, Mendoza-Cruz R, Naranjo G, Vincent BA, Peralta XG, et al. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomedicine 2017; 13(3):1095-103. https://doi.org/10.1016/j.nano.2016.10.011

Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kurcz A. Effects of selenium on morphological changes in Candida utilis ATCC 9950 yeast cells. Biol Trace Elem Res 2016; 169(2):387-93. https://doi.org/10.1007/s12011-015-0415-3

Downloads

Published

2021-11-14

How to Cite

Darroudi, M. ., Rangrazi, A. ., Ghazvini, K. ., Bagheri, H. ., & Boruziniat, A. . (2021). Antimicrobial Activity of Colloidal Selenium Nanoparticles in Chitosan Solution against Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans. Pesquisa Brasileira Em Odontopediatria E Clínica Integrada, 21, e0121. Retrieved from https://revista.uepb.edu.br/PBOCI/article/view/690

Issue

Section

Original Articles