Identification of Proteins Associated with the Formation of Oral Biofilms
Keywords:
Dental Plaque, Fusobacterium nucleatum, Streptococcus gordonii, GenomicsAbstract
Objective: To identify proteins associated with the formation of Streptococcus gordonii and Fusobacterium nucleatum biofilms. Material and Methods: Biofilms composed of two bacterial species, S. gordonii and F. nucleatum, were cultured for 1, 4, 7, and 10 days. The presence of both species was confirmed via amplification of the srtA and radD genes using real-time PCR. The concentrations of proteins associated with the biofilms and individual species were quantified using Western blotting. Results: The protein profiles of S. gordonii and F. nucleatum from individual cultures determined using one-dimensional electrophoresis revealed proteins found in S. gordonii and in F. nucleatum. Ct and reciprocal Ct values were determined for the exposed S. gordonii and F. nucleatum biofilms. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein was detected in biofilms and F. nucleatum, whereas HSP40 protein was present only in biofilms after 7 and 10 days of formation. Conclusion: HSP40 was detected only in the formed biofilms; thus, HSP40 is an essential proteins for adhesion.
References
Guo L, He X, Shi W. Intercellular communications in multispecies oral microbial communities. Front Microbiol 2014; 5:328. https://doi.org/10.3389/fmicb.2014.00328
Kolenbrander PE, Palmer RJ, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol 2010; 8(7):471-80. https://doi.org/10.1038/nrmicro2381
Kook JK, Park SN, Lim YK, Choi MH, Cho E, Kong SW, et al. Fusobacterium nucleatum subsp. fusiforme Gharbia and Shah 1992 is a later synonym of Fusobacterium nucleatum subsp. vincentii Dzink et al. 1990. Curr Microbiol 2013; 66(4):414-7. https://doi.org/10.1007/s00284-012-0289-y
Aruni AW, Dou Y, Mishra A, Fletcher HM. The biofilm community-rebels with a cause. Curr Oral Health Rep 2015; 2(1):48-56. https://doi.org/10.1007/s40496-014-0044-5
Haffajee AD, Socransky SS, Patel MR, Song X. Microbial complexes in supragingival plaque. Oral Microbiol Immunol 2008; 23(3):196-205. https://doi.org/10.1111/j.1399-302X.2007.00411.x
Kaplan CW, Lux R, Haake SK, Shi W. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol Microbiol 2009; 71(1):35-47. https://doi.org/10.1111/j.1365-2958.2008.06503.x
Handley PS, Carter PL, Wyatt JE, Hesketh LM. Surface structures (peritrichous fibrils and tufts of fibrils) found on Streptococcus sanguis strains may be related to their ability to coaggregate with other oral genera. Infect Immun 1985; 47(1):217-27. https://doi.org/10.1128/IAI.47.1.217-227.1985
Back CR, Douglas SK, Emerson JE, Nobbs AH, Jenkinson HF. Streptococcus gordonii DL1 adhesin SspB V-region mediates coaggregation via receptor polysaccharide of actinomyces oris T14V. Mol Oral Microbiol 2015; 30(5):411-24. https://doi.org/10.1111/omi.12106
Millones-Gómez PA, Maurtua-Torres D, Bacilio-Amaranto R, Calla-Poma RD, Requena-Mendizabal MF, Valderrama-Negron AC, et al. Antimicrobial Activity and Antiadherent Effect of Peruvian Psidium guajava (Guava) Leaves on a Cariogenic Biofilm Model. J Contemp Dent Pract 2020; 21(7):733-40.
Jakubovics NS, Stromberg N, van Dolleweerd CJ, Kelly CG, Jenkinson HF. Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands. Mol Microbiol 2005; 55(5):1591-605. https://doi.org/10.1111/j.1365-2958.2005.04495.x
Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol 2010; 192(19):5002-17. https://doi.org/10.1128/jb.00542-10
Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005; 43(11):5721-32. https://doi.org/10.1128/jcm.43.11.5721-5732.2005
Kolenbrander PE, London J. Adhere today, here tomorrow: Oral bacterial adherence. J Bacteriol 1993; 175(11):3247-52. https://doi.org/10.1128/jb.175.11.3247-3252.1993
Kaplan A, Kaplan CW, He X, McHardy I, Shi W, Lux R. Characterization of aid1, a novel gene involved in Fusobacterium nucleatum interspecies interactions. Microb Ecol 2014; 68(2):379-87. https://doi.org/10.1007/s00248-014-0400-y
He J, Bao Y, Li J, Qiu Z, Liu Y, Zhang X. Nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate reduce oral bacteria adherence and biofilm formation on human enamel surface. J Dent 2019; 80:15-22. https://doi.org/10.1016/j.jdent.2018.11.003
Ebersole JL, Peyyala R, Gonzalez OA. Biofilm-induced profiles of immune response gene expression by oral epithelial cells. Mol Oral Microbiol 2019; 34(1):10.1111/omi.12251. https://doi.org/10.1111/omi.12251.
Neilands J, Davies JR, Bikker FJ, Svensater G. Parvimonas micra stimulates expression of gingipains from Porphyromonas gingivalis in multi-species communities. Anaerobe 2019; 55:54-60. https://doi.org/10.1016/j.anaerobe.2018.10.007
Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Choo SW, Jakubovics NS. Transcriptional responses of Streptococcus gordonii and Fusobacterium nucleatum to coaggregation. Mol Oral Microbiol 2018; 33(6):450-64. https://doi.org/10.1111/omi.12248
Tsutsumi K, Maruyama M, Uchiyama A, Shibasaki K. Characterisation of a sucrose-independent in vitro biofilm model of supragingival plaque. Oral Dis 2018; 24(3):465-75. https://doi.org/10.1111/odi.12779
Egland PG, Du LD, Kolenbrander PE. Identification of independent Streptococcus gordonii SspA and SspB functions in coaggregation with actinomyces naeslundii. Infect Immun 2001; 69(12):7512-6. https://doi.org/10.1128/iai.69.12.7512-7516.2001
Zhou P, Li X, Huang IH, Qi F. Veillonella catalase protects the growth of Fusobacterium nucleatum in microaerophilic and Streptococcus gordonii-resident environments. Appl Environ Microbiol 2017; 83(19):e01079-17. https://doi.org/10.1128/aem.01079-17
Lima BP, Shi W, Lux R. Identification and characterization of a novel Fusobacterium nucleatum adhesin involved in physical interaction and biofilm formation with Streptococcus gordonii. Microbiologyopen 2017; 6(3):e00444. https://doi.org/10.1002/mbo3.444
Shimazu K, Oguchi R, Takahashi Y, Konishi K, Karibe H. Effects of surface reaction-type pre-reacted glass ionomer on oral biofilm formation of Streptococcus gordonii. Odontology 2016; 104(3):310-7. https://doi.org/10.1007/s10266-015-0217-2
Millones-Gómez P, Aguirre A. Efficacy of azithromycin associated with RAR in chronic periodontitis: clinical trial, randomized, controlled, triple blind parallel groups. Rev Esp Cirug Oral y Maxilofac 2018; 40(3):129-34.
Sakanaka A, Kuboniwa M, Takeuchi H, Hashino E, Amano A. Arginine-Ornithine Antiporter ArcD controls arginine metabolism and interspecies biofilm development of Streptococcus gordonii. J Biol Chem 2015; 290(35):21185-98. https://doi.org/10.1074/jbc.M115.644401
Thurnheer T, Karygianni L, Flury M, Belibasakis GN. Fusobacterium species and subspecies differentially affect the composition and architecture of supra- and subgingival biofilms models. Front Microbiol 2019; 10:1716. https://doi.org/10.3389/fmicb.2019.01716
Glover JR, Lindquist S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 1998; 94(1):73-82. https://doi.org/10.1016/s0092-8674(00)81223-4
Hendrickson EL, Wang T, Beck DA, Dickinson BC, Wright CJ, Lamont JR, et al. Proteomics of Fusobacterium nucleatum within a model developing oral microbial community. Microbiologyopen 2014; 3(5):729-51. https://doi.org/10.1002/mbo3.204
Jang YJ, Sim J, Jun HK, Choi BK. Differential effect of autoinducer 2 of Fusobacterium nucleatum on oral streptococci. Arch Oral Biol 2013; 58(11):1594-602. https://doi.org/10.1016/j.archoralbio.2013.08.006
Pensantes-Sangay S, Calla-Poma R, Requena-Mendizabal M, Alvino-Vales I, Millones-Gómez P. Chemical composition and antibacterial effect of Plantago Major Extract on periodontal pathogens. Pesqui Bras Odontopediatria Clín Integr 2020; 20:e0012.
Ben Lagha A, LeBel G, Grenier D. Tart cherry (Prunus cerasus L.) fractions inhibit biofilm formation and adherence properties of oral pathogens and enhance oral epithelial barrier function. Phytother Res 2019; 34(4):886-95. https://doi.org/10.1002/ptr.6574
Horiuchi A, Kokubu E, Warita T, Ishihara K. Synergistic biofilm formation by Parvimonas micra and Fusobacterium nucleatum. Anaerobe 2019; 62:102100. https://doi.org/10.1016/j.anaerobe.2019.102100
Lima BP, Hu LI, Vreeman GW, Weibel DB, Lux R. The oral bacterium Fusobacterium nucleatum binds Staphylococcus aureus and alters expression of the staphylococcal accessory regulator sarA. Microb Ecol 2019; 78(2):336-47. https://doi.org/10.1007/s00248-018-1291-0
Zhou Y, Millhouse E, Shaw T, Lappin DF, Rajendran R, Bagg J, et al. Evaluating Streptococcus mutans strain dependent characteristics in a polymicrobial biofilm community. Front Microbiol 2018; 9:1498. https://doi.org/10.3389/fmicb.2018.01498
Arenas Rodrigues VA, de Avila ED, Nakano V, Avila-Campos MJ. Qualitative, quantitative and genotypic evaluation of Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum isolated from individuals with different periodontal clinical conditions. Anaerobe 2018; 52:50-8. https://doi.org/10.1016/j.anaerobe.2018.05.015
Wu C, Al Mamun AAM, Luong TT, Hu B, Gu J, Lee JH, et al. Forward genetic dissection of biofilm development by Fusobacterium nucleatum: Novel functions of cell division proteins FtsX and EnvC. mBio 2018; 9(2):e00360-18. https://doi.org/10.1128/mBio.00360-18
Couvigny B, Kulakauskas S, Pons N, Quinquis B, Abraham AL, Meylheuc T, et al. Identification of new factors modulating adhesion abilities of the pioneer commensal bacterium Streptococcus salivarius. Front Microbiol 2018; 9:273. https://doi.org/10.3389/fmicb.2018.00273.
Ahn SH, Chun S, Park C, Lee JH, Lee SW, Lee TH. Transcriptome profiling analysis of senescent gingival fibroblasts in response to Fusobacterium nucleatum infection. PLoS One 2017; 12(11):e0188755. https://doi.org/10.1371/journal.pone.0188755
Matos AO, Ricomini-Filho AP, Beline T, Ogawa ES, Costa-Oliveira BE, de Almeida AB, et al. Three-species biofilm model onto plasma-treated titanium implant surface. Colloids Surf B Biointerfaces 2017; 152:354-66. https://doi.org/10.1016/j.colsurfb.2017.01.035
León Rodríguez JA, Vargas Casana ST, Millones Gómez PA. Effectiveness of chlorhexidine and essential oils associated with scaling and root planing in the treatment of chronic periodontitis. Rev Cienc Salud 2020; 18(3):1-11. https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.9795
Stephen AS, Millhouse E, Sherry L, Aduse-Opoku J, Culshaw S, Ramage G, et al. In Vitro effect of porphyromonas gingivalis methionine gamma lyase on biofilm composition and oral inflammatory response. PLoS One 2016; 11(12):e0169157. https://doi.org/10.1371/journal.pone.0169157
Blanco-Olano J, Millones-Gómez PA. Cicatrizing effect of Aloe vera gel with erythroxy coca in animal model. Med Nat 2020; 14(1):65-74.
Peyyala R, Emecen-Huja P, Ebersole JL. Environmental lead effects on gene expression in oral epithelial cells. J Periodontal Res 2018; 53(6):961-71. https://doi.org/10.1111/jre.12594
Song Y, He JZ, Wang RK, Ma JZ, Zou L. Effect of SrtA on interspecies adherence of oral bacteria. Curr Med Sci 2018; 38(1):160-6. https://doi.org/10.1007/s11596-018-1860-y
Wang H, Ai L, Zhang Y, Cheng J, Yu H, Li C, et al. The effects of antimicrobial peptide Nal-P-113 on inhibiting periodontal pathogens and improving periodontal status. Biomed Res Int 2018; 2018:1805793. https://doi.org/10.1155/2018/1805793
Izui S, Sekine S, Maeda K, Kuboniwa M, Takada A, Amano A, et al. Antibacterial activity of curcumin against periodontopathic bacteria. J Periodontol 2016; 87(1):83-90. https://doi.org/10.1902/jop.2015.150260
Park JH, Lee JK, Um HS, Chang BS, Lee SY. A periodontitis-associated multispecies model of an oral biofilm. J Periodontal Implant Sci 2014; 44(2):79-84. https://doi.org/10.5051/jpis.2014.44.2.79
Wang Q, Wright CJ, Dingming H, Uriarte SM, Lamont RJ. Oral community interactions of filifactor alocis in vitro. PLoS One 2013; 8(10):e76271. https://doi.org/10.1371/journal.pone.0076271
Hendrickson EL, Wang T, Dickinson BC, Whitmore SE, Wright CJ, Lamont RJ, et al. Proteomics of Streptococcus gordonii within a model developing oral microbial community. BMC Microbiol 2012; 12:211. https://doi.org/10.1186/1471-2180-12-211
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Pesquisa Brasileira em Odontopediatria e Clínica Integrada
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.