Creating Antibacterial Properties in Flowable Dental Composites by Incorporation of 3,4-dihydropyrimidin-2(1H)-ones

Authors

  • Mehdi Abaszadeh
  • Iman Mohammadzadeh

Keywords:

Microbial Sensitivity Tests, Compressive Strength, Streptococcus mutans, Composite Resins

Abstract

Objective: To investigate the antibacterial, mechanical, physical properties and water sorption of flowable dental composites containing 3,4-dihydropyrimidin-2(1H)-ones. Material and Methods: 3,4-dihydropyrimidin-2(1H)-ones was synthesized and the antibacterial activity of flowable dental composites containing 0–5 wt% 3,4-dihydropyrimidin-2(1H)-ones and also of their mechanical and physical properties on flowable dental composites were investigated. Flexural strength was measured by a three-point bending test. Compressive strength (CS), Water sorption (WS) and depth of cure (DOC) were investigated. The data were analyzed by One-way ANOVA test. The level of significance was determined as p<0.01. Results: The direct contact test demonstrates that by increasing the 3,4-dihydropyrimidin-2(1H)-ones content, the bacterial growth is significantly diminished (p<0.001). The average flexural strength results show that with increasing 3,4-dihydropyrimidin-2(1H)-ones until 3% in the composite, no significant difference was observed in flexural strength (p>0.001) and the mean of compressive strength results show no significant difference between 0-4% groups (p>0.001). The mean of water sorption and depth of cure results shows no significant difference between groups (p>0.001). Conclusion: Incorporation of 3,4-dihydropyrimidin-2(1H)-ones into flowable resin composites in 3% wt can reduce the activity of Streptococcus mutans.

References

Kruzic JJ, Arsecularatne JA, Tanaka CB, Hoffman MJ, Cesar PF. Recent advances in understanding the fatigue and wear behavior of dental composites and ceramics. J Mech Behav Biomed Mater 2018; 88:504-33. https://doi.org/10.1016/j.jmbbm.2018.08.008

Tanner J, Vallittu PK, Söderling E. Effect of water storage of E-glass fiber-reinforced composite on adhesion of Streptococcus mutans. Biomaterials 2001; 22(12):1613-8. https://doi.org/10.1016/s0142-9612(00)00314-8

Tanner J, Carlén A, Söderling E, Vallittu PK. Adsorption of parotid saliva proteins and adhesion of Streptococcus mutans ATCC 21752 to dental fiber-reinforced composites. J Biomed Mater Res B Appl Biomater 2003; 66(1):391-8. https://doi.org/10.1002/jbm.b.10012

Skjörland KK. Plaque accumulation on different dental filling materials. Scand J Dent Res 1973; 81(7):538-42. https://doi.org/10.1111/j.1600-0722.1973.tb00362.x

Skjorland KK. Bacterial accumulation on silicate and composite materials. J Biol Buccale 1976; 4(4):315-22.

Tanner J, Robinson C, Söderling E, Vallittu P. Early plaque formation on fibre-reinforced composites in vivo. Clin Oral Investig 2005; 9(3):154-60. https://doi.org/10.1007/s00784-005-0317-4

Mjör IA. The reasons for replacement and the age of failed restorations in general dental practice. Acta Odontol Scand 1997; 55(1):58-63. https://doi.org/10.3109/00016359709091943

Burke F, Crisp RJ, Bell TJ, Healy A, Mark B, McBirnie R, et al. One-year retrospective clinical evaluation of hybrid composite restorations placed in United Kingdom general practices. Quintessence Int 2001; 32(4):293-8.

Zhu W, Lao C, Luo S, Liu F, Huang Q, He J, et al. Mechanical and antibacterial properties of benzothiazole-based dental resin materials. J Biomater Sci Polym Ed 2018; 29(6):635-45. https://doi.org/10.1080/09205063.2018.1429861

Makvandi P, Jamaledin R, Jabbari M, Nikfarjam N, Borzacchiello AJDM. Antibacterial quaternary ammonium compounds in dental materials: a systematic review. Dent Mater 2018; 34(6):851-67. https://doi.org/10.1016/j.dental.2018.03.014

Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials — fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent mater 2007; 23(3):343-62. https://doi.org/10.1016/j.dental.2006.01.022

Leung D, Spratt DA, Pratten J, Gulabivala K, Mordan NJ, Young AM. Chlorhexidine-releasing methacrylate dental composite materials. Biomaterials 2005; 26(34):7145-53. https://doi.org/10.1016/j.biomaterials.2005.05.014

Burke F, Ray N, McConnell R. Fluoride-containing restorative materials. Int Dent J 2006; 56(1):33-43. https://doi.org/10.1111/j.1875-595x.2006.tb00072.x

Amaral G, Negrini T, Maltz M, Arthur RA. Restorative materials containing antimicrobial agents: is there evidence for their antimicrobial and anticaries effects? A systematic review. Aust Dent J 2016; 61(1):6-15. https://doi.org/10.1111/adj.12338

Jedrychowski JR, Caputo AA, Kerper S. Antibacterial and mechanical properties of restorative materials combined with chlorhexidines. J Oral Rehabil 1983; 10(5):373-81. https://doi.org/10.1111/j.1365-2842.1983.tb00133.x

Niu L, Fang M, Jiao K, Tang L, Xiao Y, Shen L, et al. Tetrapod-like zinc oxide whisker enhancement of resin composite. J Dent Res 2010; 89(7):746-50. https://doi.org/10.1177/0022034510366682

Hojati ST, Alaghemand H, Hamze F, Babaki FA, Rajab-Nia R, Rezvani MB, et al. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater 2013; 29(5):495-505. https://doi.org/10.1016/j.dental.2013.03.011

Cheng L, Weir MD, Xu HH, Antonucci JM, Lin NJ, Lin-Gibson S, et al. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms. J Biomed Mater Res B Appl Biomater 2012; 100(5):1378-86. https://doi.org/10.1002/jbm.b.32709

Hernández-Sierra JF, Ruiz F, Pena DCC, Martínez-Gutiérrez F, Martínez AE, Guillén AdJP, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 2008; 4(3):237-40. https://doi.org/10.1016/j.nano.2008.04.005

Burne RA. Oral streptococci... products of their environment. J Dent Res 1998; 77(3):445-52. https://doi.org/10.1177/00220345980770030301

Szczepańska J, Lubowiecka-Gontarek B, Pawłowska E, Szydłowska-Walendowska B. Czynniki ryzyka próchnicy związane z żywieniem a liczebność bakterii próchnicotwórczych w ślinie dzieci w wieku 3 lat. Dent Med Probems 2008; 45(2):156-64. [In Polish].

Stańczak D, Sionek MS, Nodzak AR, Osowiecki H. Zastosowanie testu bakteryjnego w celu określenia ryzyka próchnicy u dzieci do trzeciego roku życia. Dent Med Probl 2003; 40(2):273-79. [In Polish].

Manowiec J, Lisiecka K, Suszczewicz A. Wpływ programu profilaktycznego realizowanego u dzieci przedszkolnych na liczbę Streptococcus mutans i Lactobacillus w ślinie. Dent Med Probl 2003; 40(2):281-6. [In Polish].

Hussain MS, Wafaa S, Altamemi SJDIT. Antibacterial activity of pomegranate peels aqueous extractions on dental caries and gingivitis Streptococcus mutans in compared with 0.2% chlorhexidine. Drug Invent Today 2019; 11(12):3097-3100.

An S, Evans JL, Hamlet S, Love RM. Incorporation of antimicrobial agents in denture base resin: A systematic review. J Prosthet Dent 2020; S0022-3913(20):30251-1. https://doi.org/10.1016/j.prosdent.2020.03.033

Kale P. Synthesis, Characterization and Biological Evaluation of Some Novel Fused Pyrimidine and Oxazine Heterocycles. [Thesis]. Swami Ramanand Teerth Marathwada University: Maharashtra, India. 2019.

Jarallah SA, Nief OA, Atia AJK. Synthesis, characterization of heterocyclic compounds and preliminary evaluation of their antibacterial activity and antioxidant agents. J Pharm Sci Res 2019; 11(3):1010-5.

Mohammadzadeh I, Asadipour A, Pardakhty A, Abaszadeh M. New crown ether-based ionic liquids as a green and versatile organocatalyst for three-component synthesis of 1, 5-Dihydropyrano [2, 3-c] chromene derivatives. Lett Org Chem 2020; 17(3):240-5.

Asif M. A mini review: biological significances of nitrogen hetero atom containing heterocyclic compounds. Bioorg Chem 2017; 2(3):146-52.

Ab Kadhem S, Ali SM, Atia AJK, Salih RH, Abdulrazaq RA. Synthesis and study of biological activities of compounds derived from new Imidazole derivative. J Pharm Sci Res 2018; 10(11):2818-24.

Fang Z, Zheng S, Chan K-F, Yuan W, Guo Q, Wu W, et al. Design, synthesis and antibacterial evaluation of 2, 4-disubstituted-6-thiophenyl-pyrimidines. Eur J Med Chem 2019; 161:141-53. https://doi.org/10.1016/j.ejmech.2018.10.039

Maddila S, Gorle S, Seshadri N, Lavanya P, Jonnalagadda SB. Synthesis, antibacterial and antifungal activity of novel benzothiazole pyrimidine derivatives. Arab J Chem 2016; 9(5):681-7. https://doi.org/10.1016/j.arabjc.2013.04.003

Tale RH, Rodge AH, Hatnapure GD, Keche AP. The novel 3, 4-dihydropyrimidin-2 (1H)-one urea derivatives of N-aryl urea: synthesis, anti-inflammatory, antibacterial and antifungal activity evaluation. Bioorg Med Chem Lett 2011; 21(15):4648-51. https://doi.org/10.1016/j.bmcl.2011.03.062

Eskandarizadeh A, Mohammadzadeh I, Shahravan A, Bavafa M, Kakooei S, Torabi MJDRJ. Prevention of secondary caries by a new antibacterial compound. Dent Res J 2020; 17(1):40-7.

Ranjbar M, Dehghan Noudeh G, Hashemipour M-A, Mohamadzadeh I. A systematic study and effect of PLA/Al2O3 nanoscaffolds as dental resins: mechanochemical properties. Artif Cells Nanomed Biotechnol 2019; 47(1):201-9. https://doi.org/10.1080/21691401.2018

Afshar MK, Torabi M, Bahremand M, Afshar MK, Najmi F, Mohammadzadeh I. Oral health literacy and related factors among pregnant women referring to health government institute in Kerman, Iran. Pesqui Bras Odontopediatria Clín Integr 2020; 20:5337. https://doi.org/10.1590/pboci.2020.011

Mohammadzadeh I, Bavafa M, Sheibani HJRRC. A fast one-pot multi-component synthesis of 3, 4-dihydropyrimidin-2 (1h)-ones in the presence of magnesium oxide as a highly effective heterogeneous base catalyst. Rev Roum Chim 2013; 58(9-10):773-7.

Weiss E, Shalhav M, Fuss Z. Assessment of antibacterial activity of endodontic sealers by a direct contact test. Endod Dent Traumatol 1996; 12(4):179-84. https://doi.org/10.1111/j.1600-9657.1996.tb00511.x

Beyth N, Domb AJ, Weiss EI. An in vitro quantitative antibacterial analysis of amalgam and composite resins. J Dent 2007; 35(3):201-6. https://doi.org/10.1016/j.jdent.2006.07.009

International Organization for Standardization. ISO 4049:2009 Dentistry - Polymer-based restorative materials. Geneva: International Organization for Standardization; 2009.

International Organization for Standardization. ISO 9917-1: Dentistry - Waterbased cements - Part 1: Powder/liquid acid-base cements. Geneva: International Organization for Standardization; 2007.

Hojati ST, Alaghemand H, Hamze F, Babaki FA, Rajab-Nia R, Rezvani MB, et al. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater 2013; 29(5):495-505. https://doi.org/10.1016/j.dental.2013.03.011

Munhoz T, Fredholm Y, Rivory P, Balvay S, Hartmann D, da Silva P, et al. Effect of nanoclay addition on physical, chemical, optical and biological properties of experimental dental resin composites. Dent Mater 2017; 33(3):271-9. https://doi.org/10.1016/j.dental.2016.11.016

Boss J, Dance DA, Chanthongthip A, Newton PN, Wuthiekanun V, Robinson MT. Antimicrobial susceptibility testing of Leptospira spp. in the Lao People’s Democratic Republic using disk diffusion. Am J Trop Med Hyg 2019; 100(5):1073-8. https://doi.org/10.4269/ajtmh.18-0955

Lewinstein I, Matalon S, Slutzkey S, Weiss EI. Antibacterial properties of aged dental cements evaluated by direct-contact and agar diffusion tests. J Prosthet Den 2005; 93(4):364-71. https://doi.org/10.1016/j.prosdent.2005.01.008

Hughes K, Powell K, Hill A, Tantbirojn D, Versluis A. Delayed photoactivation of dual-cure composites: effect on cuspal flexure, depth-of-cure, and mechanical properties. Oper Dent 2019; 44(2):E97-E104. https://doi.org/10.2341/18-140-L

Stencel R, Pakieła W, Barszczewska-Rybarek I, Żmudzki J, Kasperski J, Chladek G, et al. Effects of different inorganic fillers on mechanical properties and degree of conversion of dental resin composites. Arch Metall Mater 2018; 63(3):1361-9. https://doi.org/10.24425/123813

Yadav S, Gangwar S. The effectiveness of functionalized nano-hydroxyapatite filler on the physical and mechanical properties of novel dental restorative composite. Int J Polym Mater 2019; 69(14):1-12. https://doi.org/10.1080/00914037.2019.1631822

Okeke UC, Snyder CR, Frukhtbeyn SA. Synthesis, purification and characterization of polymerizable multifunctional quaternary ammonium compounds. Molecules 2019; 24(8):1464. https://doi.org/10.3390/molecules24081464

Yassaei S, Nasr A, Zandi H, Motallaei MN. Comparison of antibacterial effects of orthodontic composites containing different nanoparticles on Streptococcus mutans at different times. Dental Press J Orthod 2020; 25(2):52-60. https://doi.org/10.1590/2177-6709.25.2.052-060.oar

Downloads

Published

2021-11-15

How to Cite

Abaszadeh, M. ., & Mohammadzadeh, I. . (2021). Creating Antibacterial Properties in Flowable Dental Composites by Incorporation of 3,4-dihydropyrimidin-2(1H)-ones. Pesquisa Brasileira Em Odontopediatria E Clínica Integrada, 21, e0069. Retrieved from https://revista.uepb.edu.br/PBOCI/article/view/712

Issue

Section

Original Articles