Comparative Analysis of Sliding Resistance of Different Lingual Systems

Authors

  • Paolo Albertini
  • Filippo Franciosi
  • Mario Palone
  • Francesco Mollica
  • Francesca Cremonini

Keywords:

Orthodontics, Orthodontic Wires, Orthodontic Brackets

Abstract

Objective: To analyse and compare the frictional properties of 4 lingual systems combined with two types of stainless steel archwire (0.016x0.022, 0.018x0.025) and a 0.018x0.025 TMA archwire by simulating different misalignment situations in vitro. Material and Methods: Five randomly chosen brackets from each system (e-Brace, Harmony, Incognito, and STb) were used for the measurements and to simulate an upper first premolar extraction case. The friction tests were performed using a material testing machine in combination with a specialized test rig. Results: The lowest absolute friction values were found with the 0.016x0.022 SS wire in a passive configuration. STb provided the lowest mean friction, while Harmony brackets displayed the highest friction. The TMA Beta Titanium wire showed the highest friction values, but maintained proportions similar to those of the other wires as tip and torsion increased. Conclusion: The type of bracket has a significant impact on friction, and there is a positive correlation between mesiodistal bracket width and resistance to sliding. The archwire sections and materials and the vertical displacement, also significantly affect the friction generated by the system.

References

Manfredini D, Stellini E, Gracco A, Lombardo L, Nardini LG, Siciliani G. Orthodontics is temporomandibular disorder-neutral. Angle Orthod 2016; 86(4):649-54. https://doi.org/10.2319/051015-318.1

Lopez MA, Andreasi Bassi M, Confalone L, Gaudio RM, Lombardo L, Lauritano D. Retrospective study on bone-level and soft-tissue-level cylindrical implants. J Biol Regul Homeost Agents 2016; 30(2 Suppl 1):43-8.

Lopez MA, Andreasi Bassi M, Confalone L, Gaudio RM, Lombardo L, Lauritano D. Clinical outcome of 215 transmucosal implants with a conical connection: a retrospective study after 5-year follow-up. J Biol Regul Homeost Agents 2016; 30(2 Suppl 1):55-60.

Lombardo L, Carinci F, Martini M, Gemmati D, Nardone M, Siciliani G. Quantitive evaluation of dentin sialoprotein (DSP) using microbeads - a potential early marker of root resorption. Oral Implantol 2016; 9(3):132-42. https://doi.org/10.11138/orl/2016.9.3.132

Arreghini A, Trigila S, Lombardo L, Siciliani G. Objective assessment of compliance with intra- and extraoral removable appliances. Angle Orthod 2017; 87(1):88-95. https://doi.org/10.2319/020616-104.1

Lombardo L, Ortan YÖ, Gorgun Ö, Panza C, Scuzzo G, Siciliani G. Changes in the oral environment after placement of lingual and labial orthodontic appliances. Prog Orthod 2013; 14:28. https://doi.org/10.1186/2196-1042-14-28

Scuzzo G, Takemoto K. Lingual Orthodontics: A New Approach Using Stb Light Lingual System & Lingual Straight Wire. Illinois: Quintessence Publishing Co.; 2010.

Ehsani S, Mandich MA, El-Bialy TH, Flores-Mir C. Frictional resistance in self-ligating orthodontic brackets and conventionally ligated brackets. A systematic review. Angle Orthod 2009; 79(3):592-601. https://doi.org/10.2319/060208-288.1

Kusy RP, Whitley JQ. Assessment of second-order clearances between orthodontic archwires and bracket slots via the critical contact angle for binding. Angle Orthod 1999; 69(1):71-80.

Arreghini A, Lombardo L, Mollica F, Siciliani G. Torque expression capacity of 0.018 and 0.022 bracket slots by changing archwire material and cross section. Prog Orthod 2014; 15(1):53. https://doi.org/10.1186/s40510-014-0053-x

West AE, Jones ML, Newcombe RG. Multiflex versus superelastic: a randomized clinical trial of the tooth alignment ability of initial arch wires. Am J Orthod Dentofacial Orthop 1995; 108(5):464-71. https://doi.org/10.1016/s0889-5406(95)70046-3

Articolo LC, Kusy RP. Influence of angulation on the resistance to sliding in fixed appliances. Am J Orthod Dentofacial Orthop 1999; 115(1):39-51. https://doi.org/10.1016/S0889-5406(99)70314-8

Omana HM, Moore RN, Bagby MD. Frictional properties of metal and ceramic brackets. J Clin Orthod 1992; 26(7):425-32.

Willems JC. Dissipative dynamical systems part I: General theory. Arch Rational Mech Anal 1972; 45:321-51. https://doi.org/10.1007/BF00276493

Bourauel C, Freudenreich D, Vollmer D, Kobe D, Drescher D, Jäger A. Simulation of orthodontic tooth movements. A comparison of numerical models. J Orofac Orthop 1999; 60(2):136-51. https://doi.org/10.1007/BF01298963

Park JH, Lee YK, Lim BS, Kim CW. Frictional forces between lingual brackets and archwires measured by a friction tester Angle Orthod 2004; 74(6):816-24.

Knop L, Gandini LG Jr, Shintcovsk RL, Gandini MR. Scientific use of the finite element method in orthodontics. Dental Press J Orthod 2015; 20(2):119-25. https://doi.org/10.1590/2176-9451.20.2.119-125.sar

Feng Y, Kong WD, Cen WJ, Zhou XZ, Zhang W, Li QT, et al. Finite element analysis of the effect of power arm locations on tooth movement in extraction space closure with miniscrew anchorage in customized lingual orthodontic treatment. Am J Orthod Dentofacial Orthop 2019; 156(2):210-9. https://doi.org/10.1016/j.ajodo.2018.08.025

Moga RA, Cosgarea R, Buru SM, Chiorean CG. Finite element analysis of the dental pulp under orthodontic forces. Am J Orthod Dentofacial Orthop 2019; 155(4):543-51. https://doi.org/10.1016/j.ajodo.2018.05.018

Ozturk Ortan Y, Yurdakuloglu Arslan T, Aydemir B. A comparative in vitro study of frictional resistance between lingual brackets and stainless steel archwires. Eur J Orthod 2012; 34(1):119-25. https://doi.org/10.1093/ejo/cjq180

Lalithapriya S, Kumaran NK, Rajasigamani K. In vitro assessment of competency for different lingual brackets in sliding mechanics. J Orthod Sci 2015; 4(1):19-25. https://doi.org/10.4103/2278-0203.149612

Downing A, McCabe JF, Gordon PH. The effect of artificial saliva on the frictional forces between orthodontic brackets and archwires. Br J Orthod 1995; 22(1):41-6. https://doi.org/10.1179/bjo.22.1.41

Thorstenson GA, Kusy RP. Comparison of resistance to sliding between different self-ligating brackets with second-order angulation in the dry and saliva states. Am J Orthod Dentofacial Orthop 2002; 121(5):472-82. https://doi.org/10.1067/mod.2002.121562

Crincoli V, Perillo L, Di Bisceglie MB, Balsamo A, Serpico V, Chiatante F, et al. Friction forces during sliding of various brackets for malaligned teeth: an in vitro study. Sci World J 2013; 2013:871423. https://doi.org/10.1155/2013/871423

Scuzzo G, Takemoto K. Invisible Orthodontics. Berlin: Quintessence Verlaggmbh; 2003.

Moore MM, Harrington E, Rock WP. Factors affecting friction in the pre-adjusted appliance. Eur J Orthod 2004; 26(6):579-83. https://doi.org/10.1093/ejo/26.6.579

Burrow SJ. Friction and resistance to sliding in orthodontics: a critical review. Am J Orthod Dentofacial Orthop 2009; 135(4):442-7. https://doi.org/10.1016/j.ajodo.2008.09.023

Reznikov N, Har-Zion G, Barkana I, Abed Y, Redlich M. Measurement of friction forces between stainless steel wires and "reduced-friction" self-ligating brackets. Am J Orthod Dentofacial Orthop 2010; 138(3):330-8. https://doi.org/10.1016/j.ajodo.2008.07.025

Taloumis LJ, Smith TM, Hondrum SO, Lorton L. Force decay and deformation of orthodontic elastomeric ligatures. Am J Orthod Dentofacial Orthop 1997; 111(1):1-11. https://doi.org/10.1016/s0889-5406(97)70295-6

Kusy RP, Whitley JQ. Resistance to sliding of orthodontic appliances in the dry and wet states: influence of archwire alloy, interbracket distance, and bracket engagement. J Biomed Mater Res 2000; 52(4):797-811.

Preetha A, Banerjee R. Comparison of artificial saliva substitutes. Trends Biomater Artif Organs 2005; 18:178-86.

Pratten DH, Popli K, Germane N, Gunsolley JC. Frictional resistance of ceramic and stainless steel orthodontic brackets. Am J Orthod Dentofacial Orthop 1990; 98(5):398-403. https://doi.org/10.1016/S0889-5406(05)81647-6

Andreasden GF, Quevedo FR. Evaluation of friction forces in the 0,022 x 0,028 Edgewise bracket in vitro. J Biomechan 1970; 3:151-60.

Lombardo L, Scuzzo G, Arreghini A, Gorgun O, Ortan YO, Siciliani G. 3D FEM comparison of lingual and labial orthodontics in en masse retraction. Prog Orthod 2014; 15(1):38. https://doi.org/10.1186/s40510-014-0038-9

Lombardo L, Gracco A, Zampini F, Stefanoni F, Mollica F. Optimal palatal configuration for miniscrew applications. Angle Orthod 2010; 80(1):145-52. https://doi.org/10.2319/122908-662.1

Gracco A, Luca L, Cozzani M, Siciliani G. Assessment of palatal bone thickness in adults with cone beam computerised tomography. Aust Orthod J 2007; 23(2):109-13.

Pisani L, Bonaccorso L, Fastuca R, Spena R, Lombardo L, Caprioglio A. Systematic review for orthodontic and orthopedic treatments for anterior open bite in the mixed dentition. Prog Orthod 2016; 17(1):28. https://doi.org/10.1186/s40510-016-0142-0

Di Fazio D, Lombardo L, Gracco A, D’Amico P, Siciliani G. Lip pressure at rest and during function in 2 groups of patients with different occlusions. Am J Orthod Dentofacial Orthop 2011; 139(1):e1-6. https://doi.org/10.1016/j.ajodo.2010.02.030

Lopez MA, Andreasi Bassi M, Confalone L, Gaudio RM, Lombardo L, Lauritano D. The influence of conical plus octagonal internal connection on implant survival and success rate: a retrospective study of 66 fixtures. J Biol Regul Homeost Agents 2016; 30(2 Suppl 1):49-54.

Lombardo L, Marcon M, Arveda N, La Falce G, Tonello E, Siciliani G. Preliminary biometric analysis of mesiodistal tooth dimensions in subjects with normal occlusion. Am J Orthod Dentofacial Orthop 2016; 150(1):105-15. https://doi.org/10.1016/j.ajodo.2015.12.021

Perrini F, Lombardo L, Arreghini A, Medori S, Siciliani G. Caries prevention during orthodontic treatment: In-vivo assessment of high-fluoride varnish to prevent white spot lesions. Am J Orthod Dentofacial Orthop 2016; 149(2):238-43. https://doi.org/10.1016/j.ajodo.2015.07.039

Lombardo L, Toni G, Stefanoni F, Mollica F, Guarneri MP, Siciliani G. The effect of temperature on the mechanical behavior of nickel-titanium orthodontic initial archwires. Angle Orthod 2013; 83(2):298-305. https://doi.org/10.2319/040612-287.1

Lombardo L, Stefanoni F, Mollica F, Laura A, Scuzzo G, Siciliani G. Three-dimensional finite-element analysis of a central lower incisor under labial and lingual loads. Prog Orthod 2012; 13(2):154-63. https://doi.org/10.1016/j.pio.2011.10.005

Downloads

Published

2021-11-17

How to Cite

Albertini, P. ., Franciosi, F. ., Palone, M. ., Mollica, F. ., & Cremonini, F. . (2021). Comparative Analysis of Sliding Resistance of Different Lingual Systems. Pesquisa Brasileira Em Odontopediatria E Clínica Integrada, 21, e210025. Retrieved from https://revista.uepb.edu.br/PBOCI/article/view/757

Issue

Section

Original Articles